

EXCITER MODEL 1300

MONITOR MODEL 1310

C-QUAM®
AM STEREO
OWNERS MANUAL

NOTICE —

The Motorola Model 1300 AM stereo exciter has met the Federal Communications Commission requirements for Type Acceptance under Part 73 and Part 2 of the Commission's Rules and was granted Type Acceptance, FCC ID ABY89F1300.

Any modifications to this equipment by the user may be a violation of Section 2.1001(e) and/or Section 73.1660 of the FCC rules and may void the Type Acceptance.

If a user is considering a modification to this equipment, it is strongly recommended that Motorola AM Stereo be contacted for technical and procedural guidance prior to attempting any changes. For infomation, telephone (312) 576-2879.

Motorola, Inc.

AM Stereo
Schaumburg, Illinois

CAUTION: READ THIS BEFORE OPERATING EQUIPMENT

These technical comments regarding control adjustment of your Motorola AM Stereo equipment represent a few of the critical areas that can affect your station's stereo performance.

1. FRONT PANEL CONTROLS

- A. LIMITING. Do not touch this control. It should be set only by Motorola authorized personnel.
- B. L + R ADJ-1. Sets output level of L + R signal fed to modulation input of station transmitter number 1. This is not a means of increasing the amount of modulation into your transmitter. To make C-Quam compatible, two L + R's are sent through your transmitter; one in the standard envelope channel and one in quadrature through the RF channel. In order to work properly the two L + R's must have the same percentage of modulation, however, the quadrature is controlled by the exciter and the envelope is dependent on the audio sensitivity of the transmitter. The L + R ADJ control is put on the exciter in order to match these modulation levels. If not adjusted properly the stereo performance is affected.

Should you require additional envelope audio it can be obtained by adjusting your audio processor outputs. If you are adjusting L and R gains, "mono" the signal from the generator and set for minimum L-R at the new level. Don't forget to turn off the pilot for best indication of L-R rejection.

- C. L + R ADJ-2. Same as L + R ADJ-1 except used only with a second (night) transmitter.
- D. BALANCE. This control should not be touched. The audio processor gain controls provide this feature.

FRONT PANEL SWITCHES

- A. MONO/STEREO. This switch was intended as an analysis tool and is not for the demonstration of stereo. If switched while the transmitter is running do it SHARPLY or drive may momentarily be affected and cause breakers to trip! A better practice is to avoid its use except when the plate power is off.
- B. PILOT. Remember to turn the pilot on to trigger Motorola decoders into the stereo mode. Also remember to remove the pilot when measurements are being taken or the readings will all show 5% (pilot level) distortion and limited separation.
- C. NIGHT. This switch is active only if your exciter is equiped with a full night board. It does the same thing as contact closure on the rear contacts. Remember: If the front switch is "ON", the rear contacts will not function so if used in a remote situation remember to leave it in the "DAY" position.
- D. L + R ENV. This switch momentarily interupts the left hand meter function and indicates envelope drive regardless of the position of the front panel rocker switch.

No other switches or controls should be touched in day-to-day operation. Before you touch anything else either read the manual or call Motorola.

- NOTE: The L + R's in the phase and envelope channels MUST be in phase. It is imperative that the envelope polarity not be disturbed. To establish the correct polarity use the sample transmitter on the exciter and your transmitter monitor sample on a dual trace oscilloscope.
- + PEAK POLARITY. Sometimes phase reversals occur in the audio chain that cause positive peaks to end up driving the carrier towards the trough. This can be corrected by reversing both L and R leads at the exciter. DO NOT CORRECT THIS CONDITION BY REVERSING THE ENVELOPE!

Your Motorola C-Quam system is installed by a specially trained broadcast engineer to insure optimum performance. Do not adjust any controls unless you have a complete understanding of the system and alignment procedure. If you are uncertain, telephone the Motorola AM Stereo Engineering Department for direction.

AM STEREO SYSTEM C-QUAM®

EXCITER MODEL 1300 MONITOR MODEL 1310

FCC I.D. ABY89F1300

GENERAL INFORMATION

SAFETY PRECAUTIONS

This manual is intended for trained and qualified operating or service personnel who are familiar with the dangers inherent to handling potentially hazardous electrical and/or electronic circuits. It is not intended to contain a complete statement of all safety precautions which should be observed by personnel in using this or other electronic equipment.

As with all electronic equipment, care should be taken to avoid electrical shock in all circuits where substantial currents or voltages may be present.

The procedures outlined in this Manual are based on the information available at the time of publication. However, the manufacturer cannot assume liability with respect to technical application of the contents and shall, under no circumstances, be responsible for damage or injury (whether to person or property) resulting from its use.

REPLACEMENT PARTS

To obtain new service replacement or warranty items, contact Motorola at the location shown below and please supply Product Identification (Model Number, and Serial Number) and Replacement Part Identification (including Stock Number and Description). Requests for replacements may be unduly delayed if all this information is not supplied. A complete parts list is provided in this manual.

EQUIPMENT DAMAGED IN TRANSIT

If concealed damage is discovered, immediately notify the carrier, confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. Report all shortages and damages to Motorola at the location shown below.

Motorola will file all claims for loss and damage on this equipment so long as the inspection report is obtained. Disposition of the damaged item will be furnished by Motorola.

FIELD ENGINEERING SERVICE

Requests for installation, field engineering or service assistance should be directed to Motorola at the location shown below.

COMMERCIAL WARRANTY (STANDARD)

Motorola AM stereo radio broadcast products are warranted to be free from defects in material and work-manship for a period of one (1) year, (except for crystals and channel elements which are warranted for a period of ten (10) years) from the date of shipment. In the event of a defect during the applicable warranty period, if customer returns the defective part or product to Motorola, transportation prepaid, Motorola, at its option, will either repair or replace such part or product, and such action by Motorola shall be the full extent of Motorola's obligation hereunder. Motorola will pay the transportation charges to return the part or product to customer. Parts, including crystals and channel elements, will be replaced free of charge for the full applicable warranty period, but the labor to repair the product or replace defective parts will only be provided for One Hundred-Twenty (120) days from the date of shipment. Thereafter, customer must pay for labor involved in repairing the product or replacing defective parts at Motorola's then prevailing rates together with any transportation charges to and from the place where warranty service is provided.

This warranty is void if:

- a. the product is used in other than its normal and customary manner;
- the product is subject to misuse, accident, neglect or damage;
- c. unauthorized alterations or repairs are made, or unapproved parts are used in the equipment.

This warranty extends only to individual products. Because each radio broadcast system is unique, Motorola disclaims liability under this warranty or otherwise for range, coverage, performance or operation of the system as a whole. This warranty applies only within the United States and is extended by Motorola Inc., 1216 Remington Road, Schaumburg, Illinois 60195, to the original purchaser, and only to those purchasing the product solely for commercial, industrial, or governmental use. In order to obtain performance of this warranty, customer must contact its Motorola salesperson or Motorola at the address stated herein, attention: Quality Assurance Department.

THIS WARRANTY IS GIVEN IN LIEU OF ALL OTHER WARRANTIES EXPRESS OR IMPLIED, ALL OF WHICH ARE SPECIFICALLY EXCLUDED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MOTOROLA BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES.

1

MOTOROLA C-QUAM AM STEREO BROADCAST EQUIPMENT Table of Contents

SEC	TION A. INSTALLATION	Page No.
Į. '	UNPACKING AND MECHANICAL CHECKOUT	1
11.	CLOSED LOOP CHECKOUT Recommended Test Equipment Checkout and Installation Outline. Closed Loop Connections Exciter to Monitor Closed Loop Checkout (Start of Test) Left plus Right (AM) Operation Main to Subchannel Crosstalk (L+R to L-R) Subchannel (L-R) Performance Single Channel Performance Exciter Delay Equalization (Sample Transmitter)	
III.	MONITOR MEASUREMENTS OF BROADCAST TRANSMITTER Phase Modulation Noise and Hum Level	
IV.	STEREO EXCITER R.F. CONNECTIONS TO BROADCAST TRANSM	ITTER21
V.	STEREO EXCITER AUDIO CONNECTIONS TO BROADCAST TRAN	SMITTER 22
VI.	ADJUSTING THE DELAY NETWORKS (EQUALIZATION) Bulk delay adjustment	24
VII.	EXCITER LIMITER ADJUSTMENTS	
VIII.	OPERATION INTO THE ANTENNA	
SEC	CTION B. PERFORMANCE MEASUREMENTS (Audio Proof, Instructions and Forms)	
	SUMMARY OF REQUIRED MEASUREMENTS PROCEDURE	

SECTION C. PRINCIPLES OF OPERATION

	INTRODUCTION TO C-QUAM
	ENCODING/DECODING
	SIGNAL EQUATION FOR C-QUAM
	UNDERSTANDING IPM
	EXCITER CIRCUIT DESCRIPTION
SEC	TION D. MAINTENANCE/TROUBLESHOOTING
	AC LINE VOLTAGE SELECTION1
	EXCITER FRONT PANEL CONTROLS
•	EXCITER REAR PANEL OUTPUTS
	MONITOR FRONT PANEL CONTROLS
	MONITOR REAR PANEL OUTPUTS8
	MONITOR CARD LOCATIONS AND FUNCTION10
	EXCITER CARD LOCATION AND FUNCTION12
	EXCITER R.F. AMPLIFIER LAYOUT14
	MONITOR EDGE CONNECTOR IDENTIFICATION
	EXCITER EDGE CONNECTOR IDENTIFICATION
	EXCITER ALIGNMENT
	EXCITER SWITCH LOCATIONS
	MONITOR ALIGNMENT
	MONITOR TROUBLESHOOTING41
	EXCITER TROUBLESHOOTING

SECTION E. SCHEMATICS, CIRCUIT CARDS, & PARTS LISTS

INSTALLATION

I. UNPACKING AND MECHANICAL CHECKOUT

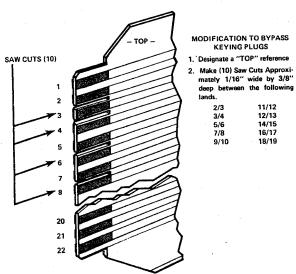
The shipping cartons for the exciter and monitor are designed to protect the equipment for normal handling during shipment. Thoroughly inspect the equipment for any evidence of mishandling and report damage to the carrier immediately.

For additional information, refer to the general information section.

CAUTION! COMPLETE THIS PROCEDURE BEFORE APPLYING POWER TO UNITS

To prevent breakage, the circuit cards are not rigidly secured in their guides. Therefore, occasonally during shipment, the circuit cards may become loose. Prior to operating this equipment, all circuit cards should be reseated in their sockets as follows:

Remove all screws from the top and back panels of both the exciter and the monitor. Carefully move each circuit card from its socket by pulling it toward the rear of the cabinet and then push it back into its socket until fully seated. The circuit cards should only be moved by pulling on the top of the card itself and NOT by any components.


After reseating all circuit cards, secure the top metal cover to the monitor only. The exciter cover and back will be replaced after adjustments have been completed, however, on models incorporating a top access plate, the exciter cover may also be secured now.

II. CLOSED LOOP CHECKOUT

Recommended Test Equipment

The following test equiment is recommended for use during installation of the Motorola AM stereo exciter and monitor.

- 1. Low distortion oscillator, 600 ohms output, +10 dBm, less than 0.1% distortion.
- 2. Distortion analyzer, capable of indicating distortion levels of less than 0.1% distortion.
- 3. Oscilloscope, bandwidth 10 MHz or better, capable of X-Y display of audio frequencies with no appreciable phase shift.
- 4. Spectrum analyzer, frequency range covering the AM broadcast band, better than 60 dB logarithmic scale, and a resolution of better than 300 Hz.
- 5. Vector card extender with receptacle, part number 3690-6 which must be modified as shown below.

The spectrum analyzer may not normally be part of a broadcast station test equipment. It can normally be rented for a reasonable fee, and it is highly recommended that it be available during the installation.

Checkout and Installation Outline

There are a number of steps which should be taken in sequence to achieve the best results with the Motorola AM stereo system. The first part of the procedure involves checking the exciter and monitor connected directly together (closed loop) in order to confirm that the equipment operates with essentially the same performance as it did when final tested at the factory.

After it has been confirmed that the Motorola equipment is operating properly, the monitor is then used to make performance measurements on the broadcast transmitter. Of particular importance is the level of incidental phase modulation generated by the broadcast transmitter. This level of IPM must be sufficiently low before attempting stereophonic operation.

When the broadcast transmitter has achieved acceptable IPM performance, then the Motorola AM stereo exciter is connected. First the R.F. interface is completed so that the transmitter takes its R.F. drive from the exciter, and then audio connections are made.

Adjustments of audio drive, the delay networks, and other procedures are then conducted until the overall stereo performance meets the FCC and the more stringent Motorola standards. Finally, the required FCC equipment performance measurements are made.

After the technical specifications are met and proven, tests are made under program conditions including adjustment of modulation and audio processing equipment.

Closed Loop Connections

The distortion analyzer, oscilloscope and spectrum analyzer should be initially connected to the exciter and monitor as shown below in Figure 1.

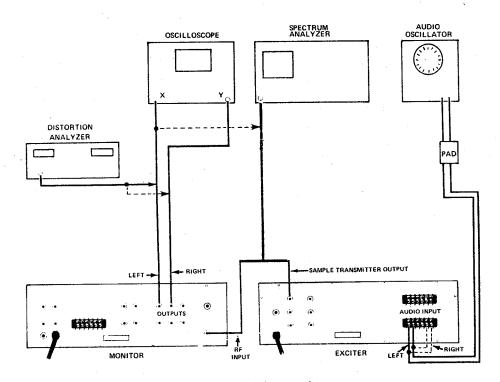
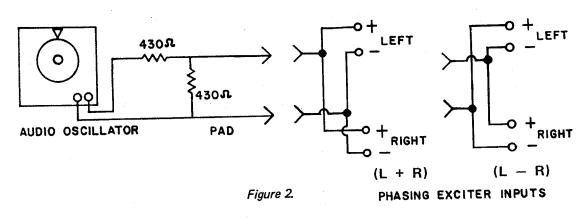



Figure 1. Closed Loop Equipment Arrangement

The input impedance to the spectrum analyzer is usually 50 ohms as is the input impedance of the monitor and the output of the exciter sample transmitter. The oscilloscope input can be paralled with the spectrum analyzer input because the oscilloscope input is usually high impedance. The distortion analyzer input can also be unbalanced and it will be used to take measurements from several of the monitor outputs appearing at BNC connectors on the rear of the unit.

An audio oscillator is connected to 600 ohm unbalanced exciter input terminals, and the following test input modes are required: left only, right only, left plus right and left minus right. In the left or right only function, the audio oscillator (balanced or unbalanced) can be directly connected to the input termnals. For L+R or L-R, the exciter audio inputs are paralleled either in phase, or out of phase. In either case, the input impedance of the paralleled inputs is 300 ohms. Although usually not necessary with high quality audio oscillators, a matching pad can be constructed as follows.

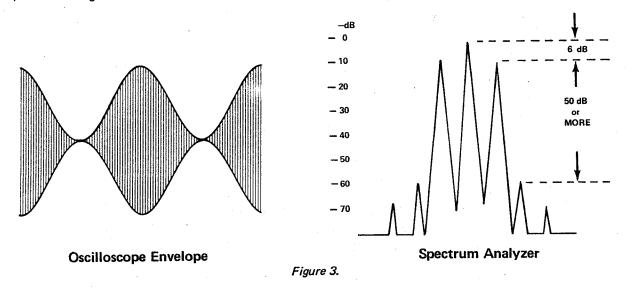
Some oscillators already contain the switching and matching for the four modes of operation which simplify testing for AM or FM stereo.

Exciter to Monitor Closed Loop Checkout (Start of Test)

Before attempting to connect the Motorola AM stereo equipment to the station transmitter, it is most important to make a check of the stereo equipment performance by directly connecting the AM stereo exciter to the modulation monitor. This not only will provide a check of the equipment performance prior to installation, but will also help acquaint the broadcast station personnel with the operation of the stereo equipment.

The exciter unit has a self-contained amplitude modulator which provides an output signal of approximately 1 volt RMS at 50 ohms and contains the completely encoded C-Quam AM stereo signal. This output (labeled - Sample Transmitter Output) could also be used to test receivers without having to use the broadcast transmitter.

The Sample Transmitter Output should be connected to the monitor "R.F. Input" with a BNC to BNC coaxial cable. The A.C. power to the exciter and the monitor can be applied by plugging in the line cords to a suitable A.C. outlet. There are no power switches to either the exciter or the monitor. Therefore, the line cords must be unplugged to turn either unit off.


After applying A.C. power, the lights for all meters should be illuminated. The small toggle switch on the monitor under the carrier level meter should be thrown to the right-hand position, toward the carrier set knob. This is a meter switch and normally will be switched to the right-hand position except when checking the pilot tone level.

The appropriate R.F. input level to the monitor is adjusted by a step attenuator which is controlled by a rotary switch on the rear of the monitor (MR8) and the potentiometer front panel control (MF11). Observe the carrier level meter while adjusting the input level using the front panel knob. The time constant for the meter circuitry is very long, so wait about one (1) second after adjusting the knob to determine if the adjustment is within range of the front panel control. If not, reset the switch attenuator and readjust the front panel control for a center indication on the carrier meter.

With no audio input to the exciter, the noise level indicated on the monitor should be lower than 50 dB for L+R or -40 dB for L-R. This is read by selecting on the monitor front panel L+R for the left meter (MF4) and L-R for the right-hand meter with (MF6). For each meter there is a row of pushbuttons providing meter ranges in 10 dB steps. The push button selection and the meter indication on the red dB scale are added together for a measurement referenced to 100% modulation.

Left Plus Right (AM) Operation

The output of the audio oscillator should now be connected through the pad to the left and right audio input terminals of the exciter, phasing the inputs for L+R operation. The monitor left-hand meter control buttons (MF4) should select (+) and (L+R). Set the oscillator frequency to 1 kHz and advance the audio level from the audio oscillator until the meter reads 100 percent modulation. Observe both the oscilloscope display of envelope modulation, and the spectrum analyzer (at the exciter sample transmitter output). If the range of the instruments are set properly, the displays should appear as follows:

At 100 percent negative modulation, the oscilloscope envelope pattern should just pinch off to zero signal and the first order sidebands on the spectrum analyzer display should be exactly 6 dB down from the carrier. The high order sidebands on the spectrum analyzer should be at least 50 dB below the fundamental sidebands indicating AM distortion less than 0.3 percent. However, be careful in setting the oscillator level because if the modulation is even slightly more than 100 percent negative, the high order distortion sidebands will increase very rapidly. Make the adjustment in modulation level more than 100 percent and watch the high order sidebands change.

After finding the 100 percent negative point from the test instruments, observe the monitor modulation meter indication and flasher lights. The 100 percent negative light should be illuminated and the left-hand panel meter should indicate 100 percent modulation. Adjust the digital switch immediately to the left of the meter to 100 percent, and the corresponding LED indicator should also light.

For distortion measurements on L+R, it is recommended that 95% modulation be used preventing erroneous distortion measurements which can result from inadvertant over modulation. So, reduce slightly the oscillator level until 95% modulation is shown on the meter. Connect the distortion analyzer to the L+R (MR11) BNC connector on the rear of the monitor.

At this time a series of audio measurements can be made to determine if the performance is within specifications. Generally the performance should be at least as follows:

Frequency response:

±1.0 dB from 30 Hz to 10 kHz

Distortion:

Less than 0.3%

Noise:

Lower than 60 dB below 100% modulation

Main to Subchannel Crosstalk (L+R to L-R Crosstalk)

The isolation between the normal amplitude modulation and the added stereo information will have a direct bearing on the separation obtainable between the left and right stereo channels. Closed loop measurements should be made to confirm that the exciter to monitor operation is capable of transmitting and indicating sufficient isolation.

The transmitted signal is the same as the previous L+R (AM) measurements. However, instead of looking at the L+R monitor output, measurements will be made of the residual signal in the L-R detector.

First modulate the exciter with 95% L+R with a 1 kHz tone and observe the right-hand meter (MF1). Select the L-R function with the push buttons (MF6), and push the range selector buttons (MF3) until a reading is obtained. On the exciter, adjust balance control (EF13) until a null in the monitor L-R indicator is obtained. Readjust the oscillator output for 95% amplitude (L+R) modulation.

The main to subchannel crosstalk can now be measured over the audio frequency range. The measurements should be within the following specifications:

Crosstalk, L+R to L-R:

35 dB from 20 Hz to 5 kHz 25 dB from 20 Hz to 10 kHz

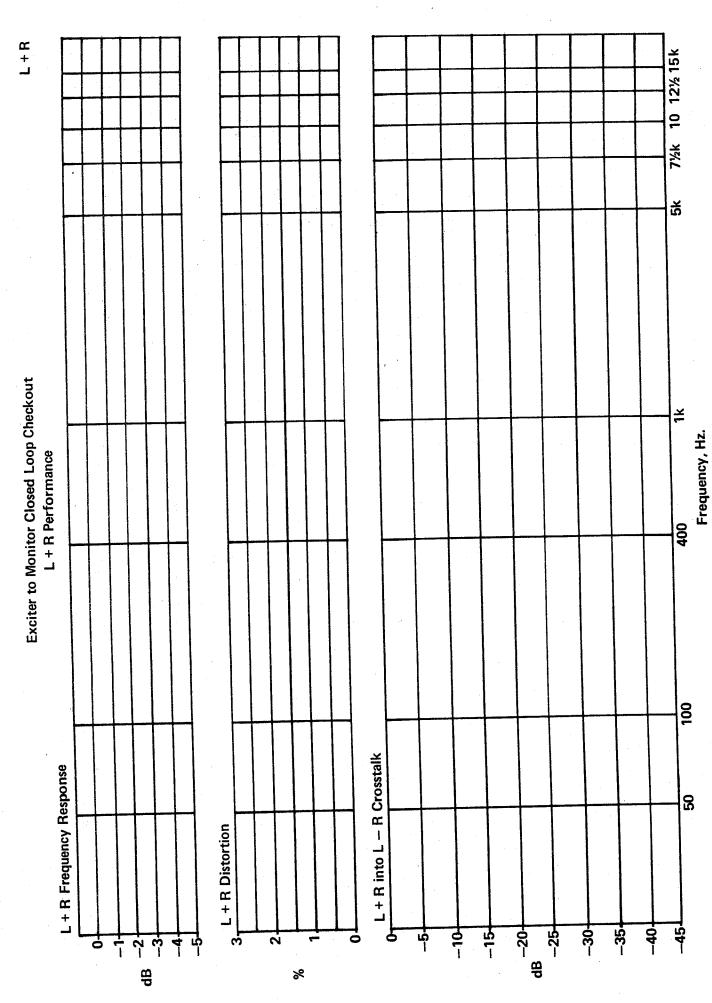
The residual signal which appears in the L—R channel can result from the limitations in the modulation monitor but under normal broadcast transmitter operation the first limitation is likely to be the incidental phase modulation (IPM) of the transmitter. When the AM transmitter is modulated, not only is the RF amplitude modulated, but there is a small amount of phase modulation, especially at higher negative levels of modulation. The readings of L—R modulation on the monitor will be used later to adjust the transmitter for minimum incidental phase modulation, or more accurately, for the Motorola system, minimum incidental quadrature modulation.

- NOTE -

The following forms are provided for your convenience to record measurements while becoming familiarized with the equipment. It is left to your judgement if the indicated measurements are to be recorded.

Exciter Serial Monitor Serial

Radio Station


Date

L + R Frequency Response 95% Modulation

L + R Distortion 95% Modulation

L + R into L – R Crosstalk (IPM) L + R Noise Level

	_		 		 	
Frequency, Hz.	15k	-				
	12%k				·	
	10k					
	71/2k			:		
	5k					
	1k	0 dB				
	400					
	100					
	20					
			,			

Subchannel (L-R) Performance Fidelity

Turn off the 25 Hz pilot using the pushbutton located on the front panel of the exciter. Set up the exciter with a 1 kHz tone set to 95% amplitude modulation (L+R). Reverse the polarity of one of the inputs to the exciter which switches the modulation to 95% L-R modulation. Observe the monitor right-hand meter and set the selector pushbutton (MF6) to "L-R". The meter should read within a few percent of 95%. The distortion and noise meter are connected to the BNC connector in the rear of the monitor labeled "L-R". Fidelity measurements should show performance within the following specification:

Frequency response:

 ± 1.0 dB from 30 Hz to 10 kHz

Distortion:

Less then 0.5%

Noise:

Lower than 40 dB below 100% modulation

Subchannel (L-R) Crosstalk Performance

In addition to the fidelity assessment, measurement of the "crosstalk" or L-R into L+R should be made. The exciter audio input connections remain as above but the distortion meter should be connected to L+R BNC connector at the rear of the monitor. Crosstalk measurements can be observed by setting the right front panel meter to L+R and reading directly from the modulation monitor.

Subchannel (IAM) Indicated Amplitude Modulation

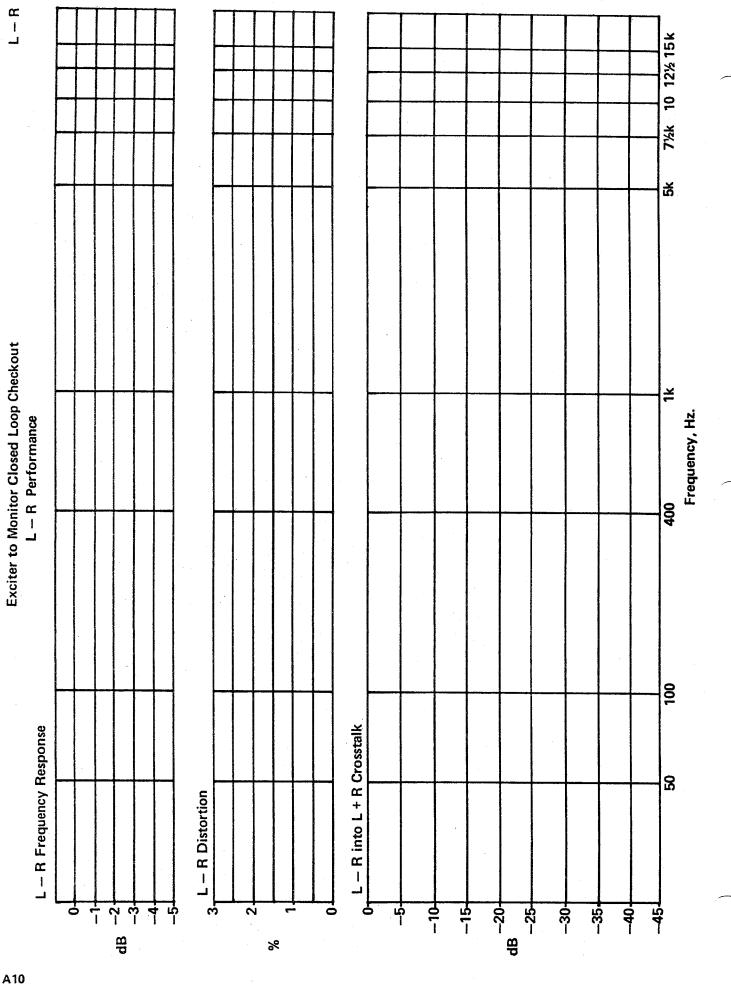
The L-R into L+R crosstalk minimum performance should exceed the value shown in Figure 8.

Exciter to Monitor Closed Loop Checkout L — R Performance

Monitor Serial.

Exciter Serial

Radio Station


Date

<u>것</u> 12%k **10** 71½k Frequency, Hz. ঠ 0 dB 半 400 100 20

L - R Frequency Response, 95% Modulation

L – R Distortion 95% Modulation L – R into L + R Crosstalk, (Incidential Amplitude Modulation)

L - R Noise Level

Single Channel Performance

Connect the audio oscillator to the exciter left channel input and adjust a 1 kHz tone to 50% modulation. The monitor indication of 50% modulation should be shown on the left meter in the L+R and left positions. The left-hand meter on the modulation monitor is switched from reading L+R to Left with pushbuttons (MF4). The right-hand meter can be switched from reading L-R to Right channel output using pushbutton (MF6). The separation for 100% modulation can be read directly on the right meter by selecting the appropriate scale with pushbuttons (MF3).

- NOTE -

For 50% modulation, the reference (on the dB scale) is 6 dB lower, therefore the separation will be 6 dB less than that indicated. This would be called the left into right separation. Connecting the oscillator to the right channel and reading the residual into the left channel would be the right into left separation.

The separation between the two channels should meet the following specification both ways.

Separation between:

200 Hz and $5 \, kHz - 30 \, dB$

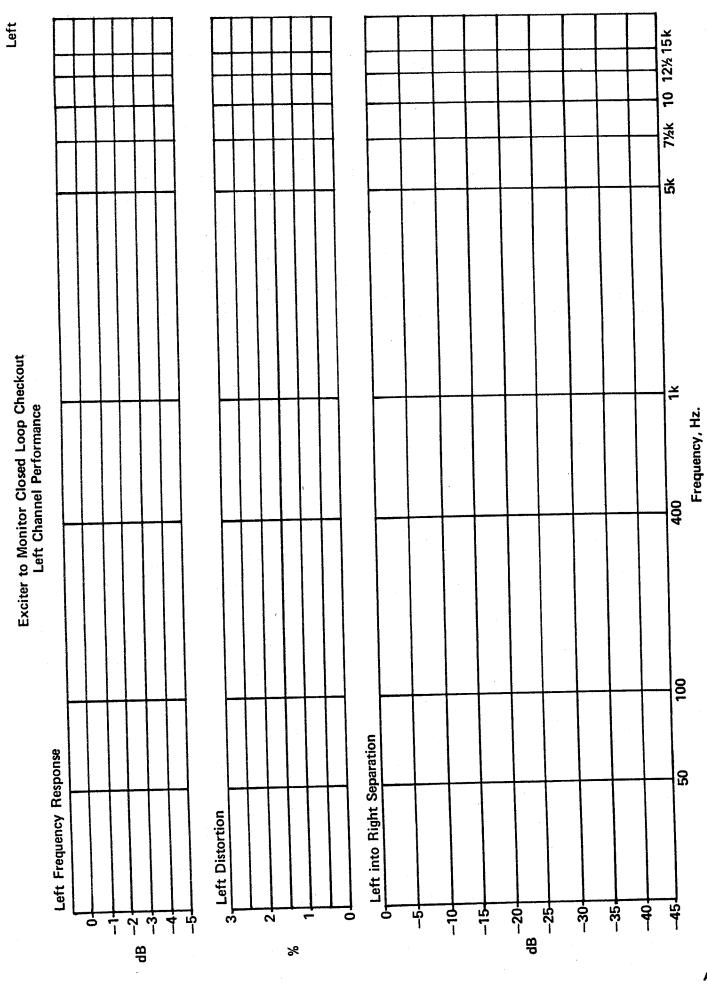
30 Hz and 15 kHz - 15 dB

If the separation specification is not obtainable, then the setting of the delay equalization should be checked, see page number 23.

Meter Compression

The circuits driving the meters use an active multiplier keeping the audio output constant regardless of the RF input over any given range. Because the multipliers tend to compress the dynamic range of the signal it may limit the reading obtainable with the meters. Expect a noise floor on (L—R) of about —40 dB and errors in separation ranging from approximately zero to 6 dB. It is therefore mandatory that actual proof numbers be taken from rear connectors with the RF set on centerline for best results. The rear connectors are not influenced by the multipliers so their level is signal dependent and calibration of the system is done at the RF set position.

Exciter Serial

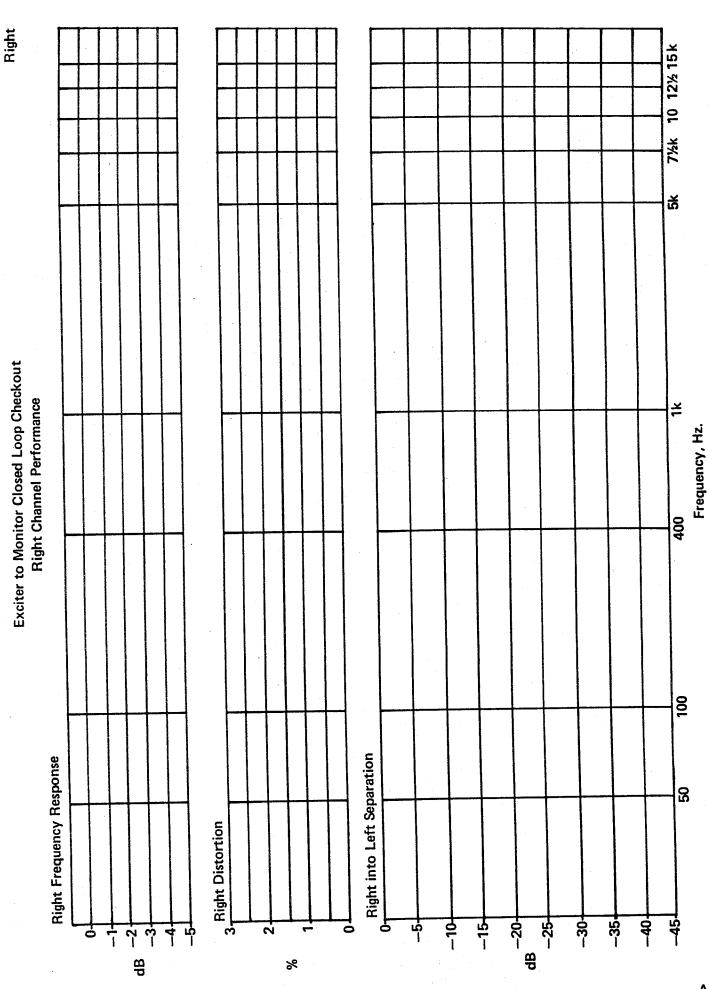

Radio Station

Monitor Serial __

Date

Exciter to Monitor Closed Loop Checkout Right Channel Performance

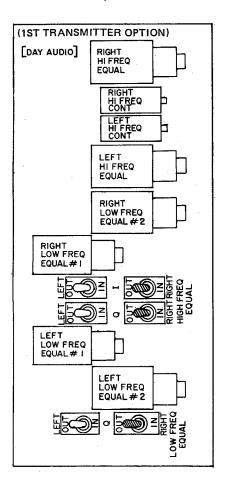
菜 12%k **1**0 7%K Frequency, Hz. ঠ 0 dB 粪 400 100 යි Right Channel Audio Frequency Response, 50% Modulation Right Channel into Left Separation, 50% Modulation Right Channel Noise Level Right Channel Distortion 50% Modulation

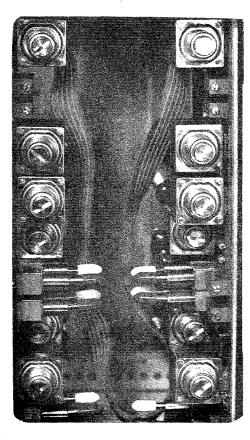

Exciter to Monitor Closed Loop Performance Left Channel Performance

듗 12%k 10k 7%k Frequency, Hz. ঠ 0 dB ¥ **400** 100 ය Left Channel into Right, Separation, 50% Modulation Left Channel Frequency Response, 50% Modulation Left Channel Noise Level Left Channel Distortion 50% Modulation

Monitor Serial

Radio Station


Date



Exciter Delay Equalization (for sample transmitter)

The Motorola AM stereo system is connected to the AM broadcast transmitter via two inputs; audio and R.F. In most transmitters, the amount of time it takes for the R.F. and the audio to propagate through the transmitter is different, (usually the audio takes longer). If the difference in propagation time is not corrected, the L+R and L-R information contained in the R.F. channel will arrive at the receiver earlier than the L+R information with the resultant loss of separation due to improper dematrixing. Thus, the exciter contains circuitry which can be switched in and adjusted to delay the audio fed to the exciter internal modulators to match the characteristics of the transmitter.

The exciter SAMPLE TRANSMITTER is used for CLOSED LOOP testing of the EXCITER and MONITOR. Normally it is necessary to delay the "Q" channel because the propagation times through the SAMPLE TRANSMITTER are different, therefore requiring compensation. Set FRONT PANEL "NIGHT/DAY" switch to the "DAY" position. Check on the NIGHT AUDIO CIRCUIT CARD (refer to component view in back of manual) that the DELAY SWITCHES S608 and S609 (located near the rear of the card) are set to zero position and that the PROCESS DEFEAT switch S607 is in the DEFEAT position (switch handle pointing to the outer edge of the NIGHT AUDIO CIRCUIT CARD. Using and oscilloscope set for x-y display, observe the LEFT and RIGHT unbalanced signal outputs at the ports J808 and J809 on the monitor. Compare the oscilloscope display with those shown on Page 18, 19 and 24.

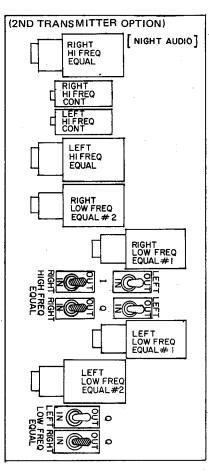


Figure 4.

Exciter Equalization Adjustments (Under Top Cover Access)

If delay equalization corrections are necessary, proceed as follows and then repeat the single channel performance measurements on Page 11. The corrections are performed ON THE DAY AUDIO CIRCUIT CARD by setting (HI FREQ EQUAL "I") switches S303 and S305 (shown in Figure 4) to the "IN" position. Adjust R389 and R391 (LEFT HI FREQ CONT) and (RIGHT HI FREQ CONT) fully CW, then adjust the high frequency equalization using a 10 kHz signal. When adjustment is complete, set all switches back to the "OUT" position.

If night audio card is installed, set FRONT PANEL "NIGHT/DAY" switch to the "NIGHT" position and repeat all delay equalization corrections identical to those performed on the DAY AUDIO CIRCUIT CARD. The corrections are performed on the NIGHT AUDIO CIRCUIT CARD by first setting the NIGHT CARD SWITCHES S603 and S605 (HI FREQ EQUAL "I") to the "IN" position, and adjust R689 and R391 (LEFT HI FREQ CONT) and (RIGHT HI FREQ CONT) fully CW, and then adjust the high frequency equalization using a 10 kHz signal. Monitor the LEFT and RIGHT signal as described in the DAY AUDIO CIRCUIT CARD section outlined above. When adjustment is complete, set all switches back to the "OUT" position.

- NOTE -

The points of maximum separation and minimum total harmonic distortion (THD) should fall at the same point. However, the final adjustment may be a compromise requiring your best judgement.

III. MONITOR MEASUREMENTS OF BROADCAST TRANSMITTER

- NOTE -

The monitor can be a valuable tool in defining trouble in your transmitter, however, it is important to realize several things. The envelope detector is driven by a fully limited RF signal which contains the phase information that encoded into your AM stereo signal. If any condition in your transmitter system causes a serious phase problem it will be reflected in unusual meter readings. If you experience this situation, go to a lower frequency where RF phase is not as important and see if the problem is eliminated. If the condition changes or is elminated, an impedance measurement may be necessary (possibly from the plate to the load).

Phase Hum and Noise, and Incidental Phase Modulation

Before attempting to initiate stereophonic operation with the broadcast transmitter, the Motorola AM stereo modulation monitor should be connected to a transmitter R.F. sample so that hum, noise phase modulation and incidental phase modulation can be measured.

CAUTION: Check the sample level at your station before connecting it to the monitor preventing possible overload damage as follows:

The monitor can be calibrated on input R.F. levels from 300 mV to 10 volts RMS unmodulated. A 10 dB per step attenuator is controlled by a knob at the rear of the monitor, and the fine adjustment is made with a knob on the front panel. Using an unmodulated transmitter, set the monitor R.F. input level for a center indication on the carrier meter.

The broadcast transmitter can now be modulated with a 1 kHz tone inserted at the normal audio input terminals. The Motorola monitor can simultaneously monitor the normal AM on the left-hand meter (button MF4 set to L+R) and the incidental phase (or quadrature) modulation on the right-hand meter by selecting L-R on pushbutton (MF6).

Although most AM broadcast transmitters can easily meet the FCC AM noise specification of 45 dB down and many can make more than 60 dB down, the transmitter phase hum can be very different. Power supply PM hum and residual phase noise can originate in the transmitter and be completely harmless for AM operation, but can become very troublesome for stereo broadcasting.

After the Motorola stereo modulation monitor is calibrated for the correct R.F. input level, the audio input to the transmitter should be terminated and a measurement of the L—R modulation level be made. It would be useful to look at the audio output of the L—R channel with a conventional display on the oscilloscope to determine the waveform of the residual noise. The scope can be triggered with a line signal to observe if hum components are the primary component to the residual signal.

Generally, the residual L-R noise should be at least 40 dB below 100% L-R modulation. If this is not the case, then work needs to be done on the transmitter to improve the noise level. This generally consists of improving the power supply filtering on the lower level R.F. stages in the transmitter, but also can be traced to the dressing of leads having A.C. currents on them. The transmitter manufacturer may have some experience or may be willing to help solve the P.M. hum problems in order to make the transmitter more usable for AM stereo operation.

Stereophonic X-Y Oscilloscope Display

It is recommended that an oscilloscope be continually used in an X-Y mode to display the stereophonic operation of the Motorola exciter and monitor. The X-Y display requires an oscilloscope of sufficient sensitivity, bandwidth and phase characteristics such that both the horizontal and vertical axes display audio signals of approximately 0.5 volts peak to peak with no appreciable phase shifting. Figure 5 indicates the ideal displays of sine wave modulation under the indicated modes of stereo operation. Additional sample X-Y displays are shown in Figures 6, 7 and 11.

Refering to Figure 1 on Page 2, the oscilloscope should be connected to the monitor unbalanced left and right BNC outputs (MR6 and MR7). The left output should be connected to the X axis oscilloscope input. Under no modulation conditions, the trace will consist of a single dot which could burn the phospher of the cathode ray tube. The intensity of the oscilloscope should, therefore, be reduced if the no modulation condition exists over an extended period of time.

The X-Y display can be very useful in troubleshooting and adjusting AM stereo. It can indicate the amount and nature of incidental phase modulation, audio delays or phase shifts, operation of audio processing equipment, amount of stereo in programming and many other characteristics limited only by the expertise of the observer.

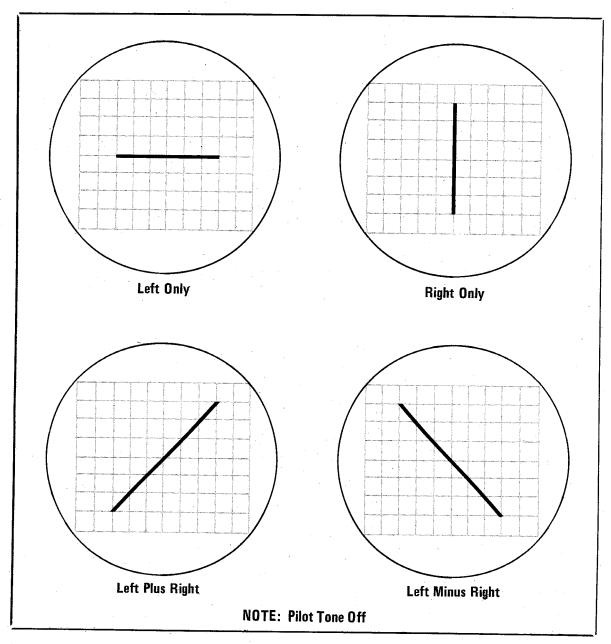
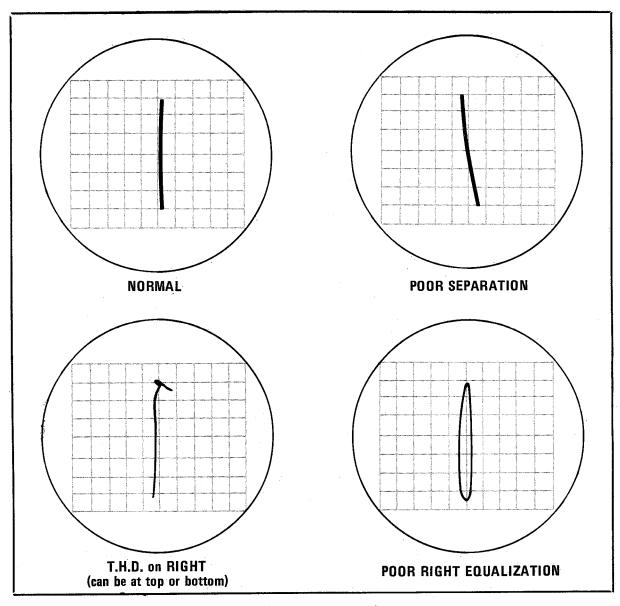
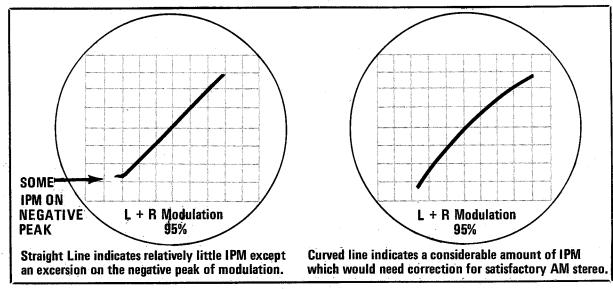
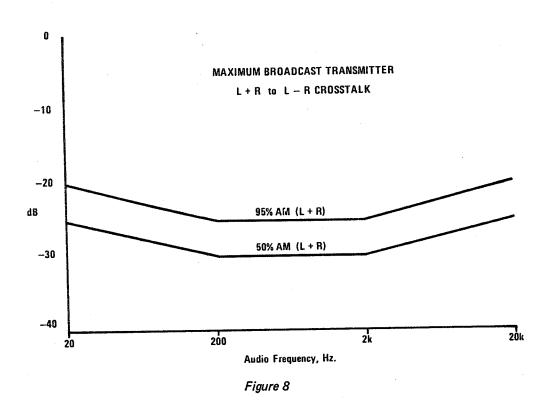


Figure 5. Ideal Oscilloscope Displays of Stereo Signals


Figure 6. Sample Oscilloscope Displays of Stereo Signals

Incidental Phase Modulation

With the transmitter modulated at 25, 50, 75, and 95% AM with a 1 kHz tone, measurements of L-R should be made. This information can be dynamically read on the X-Y display and could look like the simulated displays shown below.

The audio modulating frequency should be varied and measurements made of the crosstalk due to IPM. Generally for at least 25 dB of separation under typical stereo program modulation, the measured L+R to L-R cross talk should be less than indicated in Figure 8.

The sources of incidental phase modulation in AM broadcast transmitters vary considerably. However, two contributing areas often are: 1) the final amplifier tuning and 2) the final amplifier neutralization. In the case of conventional AM, neither adjustment is usually very critical. However, in AM stereo these adjustments can have a substantial effect in IPM. If the IPM measurement show that the transmitter does not make the maximum values indicated in Figure 8, or if it is desired to improve on the performance, adjustments to tuning and neutralization can be made. This is usually done by modulating the transmitter with a higher frequency audio tone, (5 or 7.5 kHz) and watching the crosstalk in the L—R channel on the monitor as the tuning and loading is adjusted. Neutralization adjustment often can not be made from the transmitter front panel, but has to be done with the transmitter plate voltage off and then the transmitter put back on for a measurement.

The following represents some general causes of IPM other than those mentioned above and are listed by transmitter type;

High Level Modulation

- 1. Neutralization of final
- 2. Neutralization of driver
- 3. Poor power supply filtering
- 4. Bad tubes (modulator and RF)
- 5. Poor filtering at screen on driver
- 6. Poor final loading
- 7. Tight coupling circuits
- 8. Poor grounding
- 9. Poor modulation transformer
- 10. Poor tuning 3rd harmonic resonator
- 11. Bad sample

Pulse Modulated

- 1. Poor neutralization
- 2. Bad PDM coils (out of resistance spec)
- 3. PDM not set for duty cycle and frequency
- 4. Bad tubes
- 5. Poor power supply filtering
- 6. Tight coupling circuits
- 7. Poor tuning 3rd harmonic resonator
- 8. Bad sample

Doherty

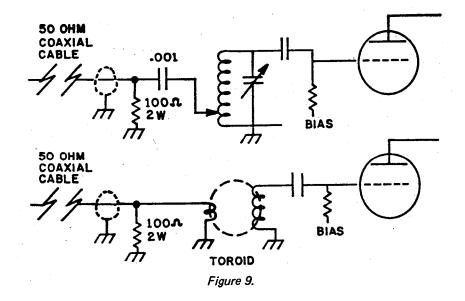
- 1. Poor neutralization (driver + final)
- 2. Bad tubes
- 3. Bad bias on doherty driver
- 4. Tight tuning circuits
- 5. Consult factor for mods needed
- 6. Bad power supplier

These are the most common problem areas. It is always advisable to consult your transmitter manufacturer for any additional input that they may be able to provide in the form of modification kits or recommendations for changes to improve AM stereo performance.

When you have found all sources of IPM you should have -30 to -40 dB of separation between the L+R and the L-R channel and the L+R should look very straight and intercept on a 45° angle when viewed on a x/y base of the scope. This is accomplished by going through a normal tuning procedure and finding elements that seem to have a great effect on IPM. If nothing seems to help much in tuning, the indication is that a tube is bad.

IV. STEREO EXCITER R.F. CONNECTIONS TO BROADCAST TRANSMITTER (BROADCAST TRANSMITTER SET-UP)

The Motorola AM stereo exciter includes several R.F. outputs designed to interface with most, if not all, existing AM broadcast transmitters. One is a 5 volt logic level output designed to drive standard digital circuitry. The other is 40 VPP into 50 ohms which is used to drive a lower level R.F. stage in the transmitter. This amplifier can be internally programmed for lower output levels if required. Both of these outputs have no amplitude modulation, but do have the proper phase modulation required for C-Quam AM stereo. Another output is available at the rear of the exciter which is not modulated in either amplitude or phase. This output is provided to trigger an oscilloscope for observations of phase modulation, or can be used to drive frequency measurement equipment.


The Motorola exciter will be preadjusted to the station frequency and all R.F. outputs of the exciter are on the station's carrier frequency. The oscillator in the exciter is designed to hold the station frequency well within the F.C.C. specification over a temperature range from 0 to 50 degrees centigrade. Generally, the output should stay within a few Hertz of the assigned frequency.

If the transmitter has a TTL input, then the TTL output of the exciter is to be connected to the transmitter digital circuitry at a point where it is operating on the station frequency. Some transmitters now use higher frequency crystals which are divided down to the operating frequency. The input is to be made after the division.

Many transmitters, however, will be best interfaced by taking the 5 watt exciter output and applying it to the highest level R.F. stage in the transmitter which can be fully driven. It is possible for the transmitter output signal to be coupled back through the exciter and the connecting cables which in turn can cause incidental phase modulation. Therefore, the higher the level on the cable and the higher the R.F. stage in the transmitter being driven, the less opportunity for incidental phase modulation.

The 5 watt amplifier in the exciter has a square wave output with a level of approximately 42 volts peak to peak into 50 ohms resistive. The lower level R.F. stages in the transmitter should be studied to determine where is the best point for inserting drive of this voltage level. If the instruction book for the transmitter does not indicate the normal R.F. levels, they can be measured with a suitable R.F. voltmeter or the manufacturer can be consulted.

In the case of driving a tube R.F. stage, the 50 ohm inpedance can be stepped up by tapping down on a coil in the grid circuit of the stage if it is tuned, or by using a toroidal step up transformer as shown in figure 9.

After sufficient drive from the stereo exciter to your transmitter has been accomplished, a recheck of the phase modulated hum and noise, and incidental phase modulation should be made. Using the normal audio input to the transmitter, checks should be made of the L—R noise level and crosstalk between AM (L+R) and L—R channels as was perviously done. It is also advisable to check the audio performance of the L—R channel to be sure that the broadcast transmitter is not substantially degrading the L—R performance (see Page 8).

V. STEREO EXCITER AUDIO CONNECTIONS TO THE BROADCAST TRANSMITTER

The Motorola AM stereo exciter simply takes the left and right audio channels and sums them into L+R for the broadcast transmitter audio input. Two basic objectives must be met in connections to the transmitter. One is the phasing of the transmitter audio input, and two the input level must be precisely adjusted so that the C-Quam modulation will be transmitted properly. The audio frequency response and distortion of the circuitry is sufficiently low that it should not affect the monaural performance of the transmitter. Initially, an audio oscillator set to 100 Hz should be connected to the left and right audio inputs of the stereo exciter, phased for L+R modulation.

The phasing of the exciter audio output to the broadcast transmitter can be checked by comparing the envelope display of the exciter sample transmitter output with the broadcast transmitter envelope. This should be done with a dual trace oscilloscope in the chop mode with the triggering taken from the audio oscillator (see Figure 10).

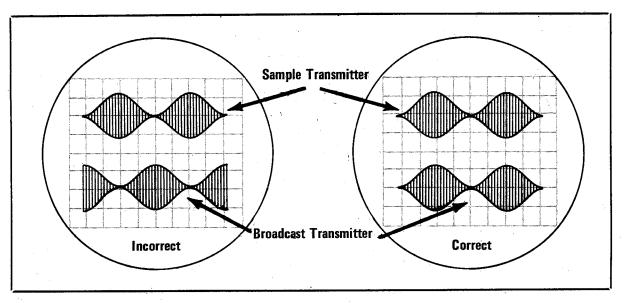


Figure 10 Phasing of Broadcast Transmitter Audio Input

While observing the dual trace display of envelope modulation at the sample transmitter output (ER3) the depth of modulation can also be approximately adjusted. Start by adjusting the tone to the exciter left plus right channels from the oscillator until the broadcast transmitter is modulating about 50%. Next, adjust the exciter audio drive "L+R ADJ." to the broadcast transmitter (EF8), (a screwdriver adjust on the front panel under the plastic cover) until the envelope modulation is the same as the sample transmitter. Increase the audio input to the exciter until the sample transmitter modulation is 100%, and then adjust the broadcast transmitter modulation to the same value with the front panel screwdriver adjust.

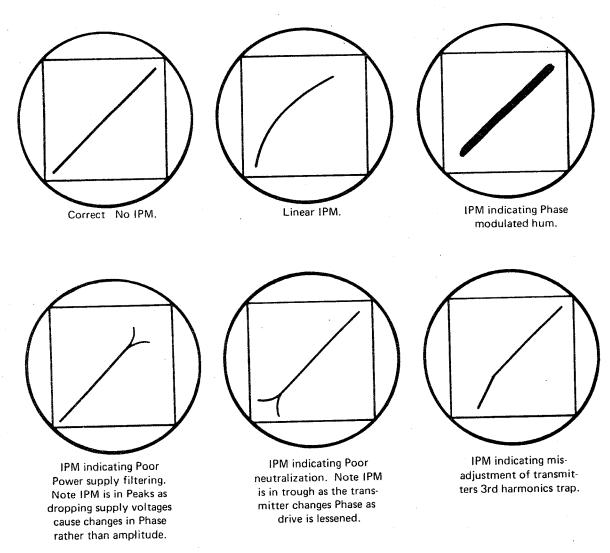
The precise setting of the L+R drive to the broadcast transmitter can be more accurately set by observing separation. However, separation at this time is most likely limited by the difference in delays between L+R and L-R.

An alternator method of adjusting L+R gain is to set up for x/y display and adjust the gain so right is straight up and down and left is straight in the horizontal plane. This should be done with about 50% single channel modulation.

VI. ADJUSTING THE DELAY NETWORKS AND EQUALIZATION

- NOTE -

- 1. The 25 Hz pilot tone must be turned off with the front panel switch.
- 2. The process defeat switch S607 must be in the "DEFEAT" position (located on the night audio circuit card.)
- 3. CAUTION: Do not touch the following setting on the front panel at this time. Refer to section VII Limiter Adjustments and the Alignment Procedure.
 - 3.1 + LIMIT
 - 3.2 LIMIT
 - 3.3 BALANCE
- 4. The night circuit card is an option and may not be used in your exciter.


Delay Adjustments

In order to adjust the delay, the cover plate in the middle of the top cover must be removed and the back cover must be opened. At this time it might be easier to have the EXCITER placed on a table rather than in a rack so that the switches and controls can be more accessible. Even without setting the delay networks it is quite possible to achieve 15 dB of separation or more, however, this varies considerably with the transmitter type.

To start the process, set the OSCILLATOR to 1 kHz 50% envelope modulation, LEFT input only. Using an oscilloscope set for X-Y display, observe the LEFT and RIGHT unbalanced signal outputs at the ports J808 and J809 on the monitor. Adjust LEFT DELAY SWITCH S608 from its zero position in 1 microsecond steps for best closure. Compare the oscilloscope display with those shown on Pages 18, 19 and 24.

Repeat procedure for RIGHT input only by adjusting RIGHT DELAY SWITCH S609 from its zero position in 1 microsecond steps for best closure.

Figure 11. Sample of IPM Oscilloscope Displays

Bulk Delay Adjustment

- NOTE -

If the maximum of 15 microseconds of delay does not produce adequate closure add BULK DELAY CARD BD705 to the bottom of the NIGHT AUDIO CIRCUIT CARD and connect into circuit. Each switch section on the BULK DELAY CARD adds 10 microseconds of delay for a total of 40 microseconds. The maximum total system delay for both the LEFT and RIGHT audio channels with the BULK DELAY is 40 + 15 or 55 microseconds.

Return the LEFT and RIGHT DELAY SWITCHES S608 and S609 to their ZERO position. Repeat the above procedure for both the LEFT only and RIGHT only sections by adding BULK DELAY in 10 microsecond groups and using LEFT and RIGHT DELAY SWITCHES S608 and S609 for fine adjustment until best closure is obtained.

Note: It may be necessary to increase the oscillator frequency up to a maximum of 2 kHz for complete closure.

HiFrequency Equalization Adjustment

To continue the equalization, set the HI FREQ EQUAL "I" switches on both the DAY and NIGHT CIRCUIT CARDS (S303, S305, S603, S605) to the "OUT" positions. Set the HI FREQ EQUAL "Q" and LOW FREQ EQUAL "Q" switches on both the DAY and NIGHT CIRCUIT CARDS (S304, S306, S302, S301, S604, S606, S602 and S601) to the "IN" position. See Figure 4.

Set the OSCILLATOR to 10 kHz 50% envelope modulation, FRONT PANEL NIGHT/DAY SWITCH to DAY position, LEFT input only.

Adjust LEFT HI FREQ EQUAL CONTROLS, R302 C-D and R389 for best closure.

Change to RIGHT input only and adjust RIGHT HI-FREQ EQUAL controls, R302 A-B and R391 for best closure.

Optional Night Function Adjustment

Set FRONT PANEL NIGHT/DAY SWITCH to NIGHT position with EXCITER switched to NIGHT TRANSMITTER.

Repeat LEFT and RIGHT HI FREQ EQUALIZATION using the identical controls on the NIGHT CIRCUIT CARD directly opposite the DAY CIRCUIT CARD controls described above.

Low Frequency Equalization Adjustment

To continue the equalization, set the OSCILLATOR to 100 Hz 50% envelope modulation, FRONT PANEL NIGHT/DAY SWITCH to DAY position LEFT input only.

Adjust LEFT LOW FREQ EQUAL No. 1 and No. 2 controls, R304 C-D and R307 C-D for best closure.

Change to RIGHT input only and adjust RIGHT LOW FREQ EQUAL No. 1 and No. 2 CONTROLS, R304 A-B and R307 A-B for best closure.

Optional Night Function Adjustment

Set FRONT PANEL NIGHT&DAY SWITCH to NIGHT position with EXCITER switched to NIGHT TRANSMITTER.

Repeat LEFT and RIGHT LOW FREQ EQUALIZATION using the identical controls on the NIGHT CIRCUIT CARD directly opposite the DAY CIRCUIT CARD controls described above.

Separation Checks

Separation measurements should now be made over the audio spectrum with the LEFT channel driven and then the same measurements with the RIGHT channel driven. It is most useful to prepare a graph of the separation in order to judge the action of the various controls. Also, the stereophonic distortion should be measured, that is the LEFT channel distortion when LEFT is driven, and the RIGHT channel distortion when RIGHT is driven. Many times there will be a tradeoff between separation and distortion, and there may be very good separation in one direction (RIGHT into LEFT) and marginal separation the other way (LEFT into RIGHT).

At this point, separation should be better than 25 dB both ways. The adjustments will not follow a prescribed pattern, but improvements can be made by trial and error. Include in the adjustments a trimming of the FRONT PANEL "L+R ADJ" audio drive control. If the transmitter has sufficient low Incidental Phase Modulation (IPM), there should typically be 30 dB separation between 100 Hz and 5 kHz.

The separation below and above this range will be limited by the equalization to precisely match the transmitter, and by bandwidth limits of the transmitter/antenna system.

- NOTE -

Return the PROCESS DEFEAT SWITCH S607 to the "ON" position.

VII EXCITER LIMITER ADJUSTMENTS

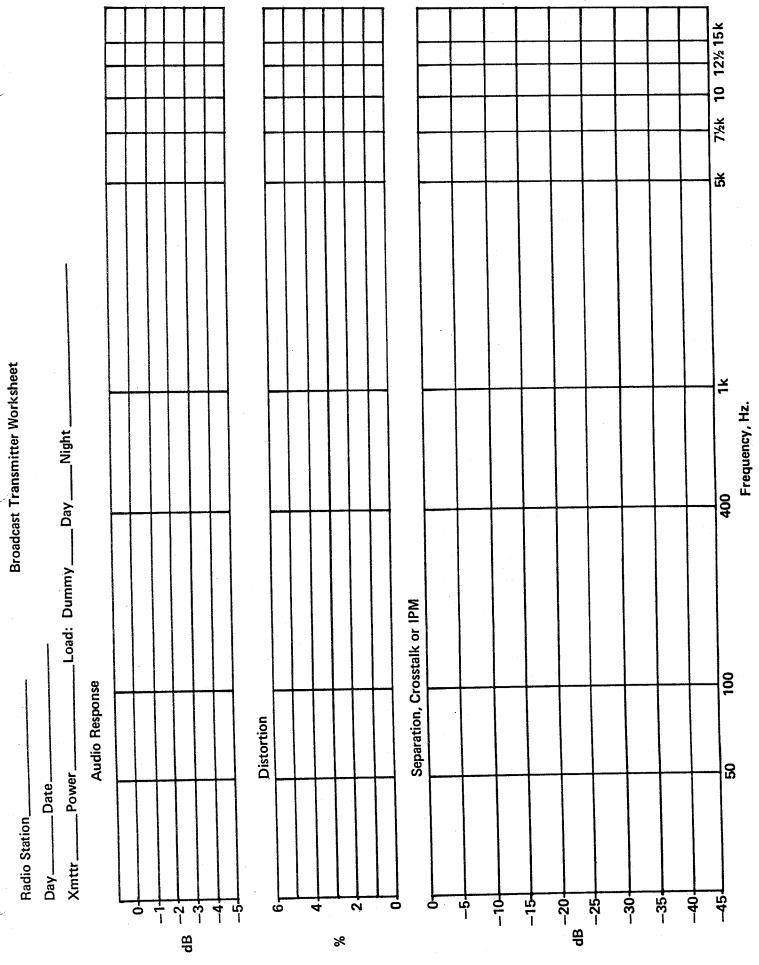
- NOTE -

Normally the + limit and - limit controls on the front panel are set at the factory and should not require adjustment.

The + LIMIT AND - LIMIT CONTROLS set the level beyond which the audio signals will be limited (clipped). The (L+R)_Q, (L-R)_Q and the (L+R)_I audio signals + and - limit levels are set simultaneously.

The + and — limiters for the (L+R)_I audio signal that is returned to the TRANSMITTER MODULA-TOR are disconnected. (DIODES D302 and D308 are removed from the DAY CIRCUIT CARD). This requires that both the + and — limiting action, (to prevent over modulation), be accomplished in the stations Audio Processor or in the transmitter proper.

The - LIMITER for the (L+R)Q and (L-R)Q audio signal channels is set to the limit the C-QUAM point to approximately the 98% modulations level.


The + LIMITER is usually set for no + LIMITING unless required by the station, (control set fully ccw).

VIII OPERATION INTO THE ANTENNA

After satisfactory stereo operation into the dummy load, the final adjustment should be checked by operating into the antenna system during experimental hours. There are two basic effects to look for when operating into the antenna. One is that the impedance/bandwidth of the antenna system often is much narrower than the dummy load and the radiation from the antenna back into the transmitter building can increase the possibility of Incidental Phase Modulation.

With the transmitter operating into the antenna system, measure the stereo separation and distortion. If the high frequency performance (above 5 kHz) has degraded, readjust the high frequency equalization for the best compromise between separation and distortion. If the separation has degraded considerably on all audio frequencies, check the level of Incidental Phase Modulation by Modulating the transmitter with the audio oscillator connected directly to the transmitters audio input terminals. Measure the residual L-R out of the MONITOR and compare with previous measurements. If the level is much greater than previously measured into the DUMMY LOAD the indication is that the increase in Incidental Phase Modulation is being caused by the RADIATED R.F. signal from the ANTENNA. Appropriate corrective action must be undertaken.

This completes the check out and adjustment. Tighten all covers and position equipment in its permanent location.

AM STEREO EQUIPMENT PERFORMANCE MEASUREMENTS (Audio Proof)

The FCC requires AM broadcast stations to conduct equipment performance measurements after installation of AM stereo transmitting equipment. The characteristics to be measured are described in Section 73.1590 and the minimum performance specifications are described in Sections 74.40 and 73.128. Copies of these sections of the FCC Rules are reproduced in Appendix A.

The FCC requirements are quite extensive and a considerable number of data points must be taken. For the broadcaster's convenience, forms for tabulating and plotting the data are included in this section. A summary of the FCC proof requirements is shown in Figure 1.

SUMMARY OF FCC REQUIRED AM STEREO EQUIPMENT PERFORMANCE MEASUREMENTS

Measurement Modulation Level FCC Limit L + R Frequency Response 95% X 75% ± 2 dB X 50% 25% 100 Hz - 5 kHz X 4 95% 7.5% X 4 50% 5% X 50% 5% X 25% 5% X Carrier Shift 85% 5% X 50% 5% X 25% 5% X Noise Level 100% 45 dB below 400 Hz X Incidental Phase Modulation 95% None Specified X Main to Subchannel Crosstalk 95% None Specified X Subchannel to Main Crosstalk 95% None Specified X	X	X X X	L-R
Frequency Response 75% 50% 50% 75% ± 2 dB X X X X X X X X X X X X X X X X X X X	X	X	
Frequency Response 75% 50% 50% 75% ± 2 dB X X X X X X X X X X X X X X X X X X X	X	X	
Solution Solution	X	X	
25% 100 Hz - 5 kHz X 95% 7.5% X X X X X X X X X	X		
Harmonic Distortion 75% 5% X 75% 5% X 50% 5% X 25% 5% X Carrier Shift 85% 5% X 85% 5% X 50% 5% X Noise Level 100% 45 dB below 400 Hz X Incidental Phase Modulation 95% None Specified X Main to Subchannel Crosstalk 95% None Specified X			
Solution Solution			
Solution	X	X	
25% 5% X	Х	X	
Carrier Shift 85% 50% 50% 55% X 25% 50% X Noise Level 100% 45 dB below 400 Hz Incidental Phase Modulation 95% None Specified X Main to Subchannel Crosstalk 95% None Specified X	X	X	
Carrier Shift 85% 5% X 50% 5% X 25% 5% X Noise Level 100% 45 dB below 400 Hz X Incidental Phase Modulation 95% None Specified X Main to Subchannel Crosstalk 95% None Specified X			
Noise Level 100% 45 dB below 400 Hz X Incidental Phase Modulation 95% None Specified X Main to Subchannel Crosstalk 95% None Specified X			
Noise Level 100% 45 dB below 400 Hz X Incidental Phase Modulation 95% None Specified X Main to Subchannel Crosstalk 95% None Specified X			
Noise Level Incidental Phase Modulation Main to Subchannel Crosstalk 95% None Specified X			
Main to Subchannel Crosstalk 95% None Specified X	×	X	
Main to Subchannel Crosstalk 95% None Specified			
Subchannel to Main Crosstalk 95% None Specified	. *		v
			X
Separation No Spec. 15 dB 0 – 5 years Measu 20 dB 5+ years 400 Hz – 5 kHz	rement	not requ	ired
Harmonic and Spurious 95% X Radiation 75% 75%	X X		X

Figure 1.:

PROCEDURE

Although the FCC requires that equipment performance measurements be made between a common audio input amplifier at the studio to the transmitting antenna terminals, the following instructions are written to aid the broadcaster in making initial measurements of AM stereo performance at the transmitter. After satisfactory tests have been completed with the transmitting equipment, the audio oscillator signal can be fed to the required common audio input amplifier at the studio for the actual required performance measurements. Thus, when the following specifies a connection to the exciter audio input, the connection would then be to the common audio input amplifier at the studio. If Telco lines or STL are improperly installed, the Motorola broadcast engineer will take transmitter measurements on the assumption that proper lines will yield similar results.

Motorola will provide to the broadcast station a complete AM exciter and modulation monitor capable of generating and accurately demodulating and indicating the operation of the C-Quam system. The modulation monitor is capable of demodulating and accurately indicating: amplitude modulation, left minus right modulation, left channel modulation, right channel modulation, carrier shift, right or left channel noise levels, separation, and level of pilot tone. In addition, the level of incidental phase modulation can be readily calculated from the left minus right modulation indication when modulating with AM. The frequency of pilot tone modulation can be measured with instruments connected to the modulation monitor. The distortion and noise levels of the modulation monitor are sufficiently low that the measurements made of the various performance characteristics will be reflective of the limits of the broadcast transmitter/stereo encoder performance.

- NOTE -

In the following discussion the modulation meters should only be used for approximate measurements. The circuits driving the meters use an active multiplier keeping the audio output constant regardless of the RF input over any given range. Because the multipliers tend to compress the dynamic range of the signal it may limit the reading obtainable with the meters. Expect a noise floor on (L-R) of about -40 dB and errors in separation ranging from approximately zero to 6 dB. It is therefore mandatory that actual proof numbers be taken from rear connectors with the RF set on centerline for best results. The rear connectors are not influenced by the multipliers so their level is signal dependent and calibration of the system is done at the RF set position.

Referring to Figure 2, the measurement of main (L+R) modulation capability is made by paralleling the left (A) and right (B) audio inputs to the stereo exciter (phased for L+R modulation) and connecting the audio oscillator through the pad to the junction. The main (L+R) modulation can be read directly on the modulation monitor by selecting "L+R" for the indication on the left hand meter (see Figure 2). The level of the audio oscillator can be increased until at least 85% modulation is read on the monitor. The frequency of the oscillator can be varied over the range of 50 to 5000 Hz while observing the level on the modulation monitor for the required modulation level.

For (L) left, or (R) right only modulation, the audio oscillator should be directly connected without the pad to first the left (A), and then the right (B) inputs to the AM stereo exciter. The oscillator level should be advanced until the main channel (L+R) modulation reaches at last 75% modulation as indicated on the monitor. The oscillator frequency is then varied over the range of 50 to 5000 Hz while observing the monitor.

For measurement of distortion, the audio oscillator is connected to the stereo exciter as previously described. For main (L+R) distortion measurements, the distortion meter should be connected to the BNC connector on the rear of the modulation monitor labeled "L+R". For left or right distortion measurements, connect the oscillator directly to the left input on the exciter and connect the distortion analyzer to the left output on the modulation monitor. The same process is repeated for right only distortion measurements. If the 600 ohm balanced output is used, terminate with a 600 ohm load.

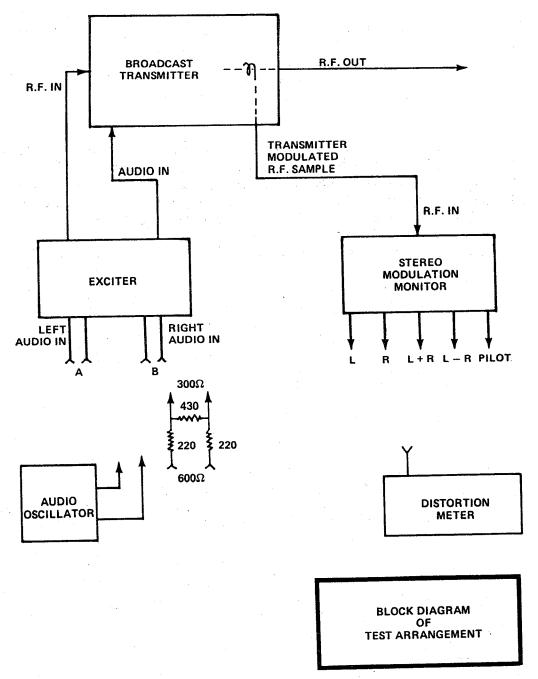


Figure 2.

The audio oscillator is connected as previously described for main (L+R), left (L) and right (R) modulation. The frequency response can be directly observed by selecting "L+R" for main channel response or "L" for the left channel response on the left meter or "R" for right channel response on the right meter of the modulation monitor. Response can also be read on the distortion meter in the audio voltmeter function by connecting to the appropriate left, right or left + right outputs of the modulation monitor at the rear of the unit.

The carrier shift can only be measured on a spectrum analyzer, or with a Belar modulation analyzer. With no modulation applied to the AM stereo exciter, the carrier level indicator should be carefully set to the zero or calibrate point. The audio oscillator is to be connected to the paralleled left and right inputs of the AM stereo encoder (phased for L + R modulation) through the pad. The output level of the oscillator is to be advanced while observing the carrier level indicator in the modulation monitor. The maximum change in carrier level indication is to be recorded for modulation levels from zero to 100% amplitude modulation.

Both left (L) and right (R) audio inputs to the AM stereo exciter are terminated with 600 ohm resistors. Main (L+R), left (L) and right (R) channel noise levels can be directly read on the Motorola AM stereo modulation monitor by selecting the appropriate mode for the left or right meters, and depressing the meter range buttons until an on scale reading is obtained. The noise level is obtained by adding the meter range value with the indication of the red dB scale on the meter. It is already calibrated against 100 percent modulation.

Indicidental phase modulation is measured as follows. Connect the audio oscillator through the pad to the parallel left and right audio inputs to the stereo exciter, making sure that the audio inputs are phased for main (L+R) modulation. The left hand meter is set to (L+R) on the modulation monitor and the right hand meter is set to (L-R). The audio oscillator output is adjusted to the various modulation levels and audio frequencies required and the readings of the (L-R) meter are observed. The meter range will have to be chosen by selecting the appropriate push button. Record the sum of the push button meter range and the red dB scale on the (L-R) meter for each combination of modulation level and frequency. The incidental phase modulation in radians is simply the voltage ratio below 100 percent L-R modulation expressed in decimal form. For instance, if the observed L-R modulation is 50 dB below 100 percent L-R modulation, the incidental phase modulation is .0032 radians or 3.2 X 10⁻³ radians.

For measurement of separation, the audio oscillator is connected directly to the (L) left or (R) right input of the AM stereo exciter. The left channel is modulated with a tone and a distortion meter or audio voltmeter is used to measure the audio output voltage from the left channel output of the modulation monitor. The audio voltage from the right channel output of the modulation monitor is then measured. The difference in dB is the separation. The reverse process is used to measure the separation of a modulated right channel into the left.

The front panel meters can be used directly when set to "L" and "R". The separation can be read directly on the panel meters with the meter range buttons only for 100 percent left or right only modulation. For lesser values of left or right only modulation, separation is computed by subtracting the readings in dB of the two meters added to the respective push button settings.

The relative pilot tone level may be measured directly on the modulation monitor by setting the small toggle switch under the carrier meter to the "pilot tone" side and reading the level of pilot tone on the carrier level panel meter. The correct level of pilot tone indication should be at the black block on the meter scale. To accurately measure the pilot level, set pushbuttons R-L and -20. The meter should indicate -26 dB.

Pilot tone frequency may be measured from the pilot tone port on the back of the modulation monitor. Use Sigmotek ITC-3 frequency counter or similar computing counter. Pilot tone should be 25 Hz \pm 0.1 Hz.

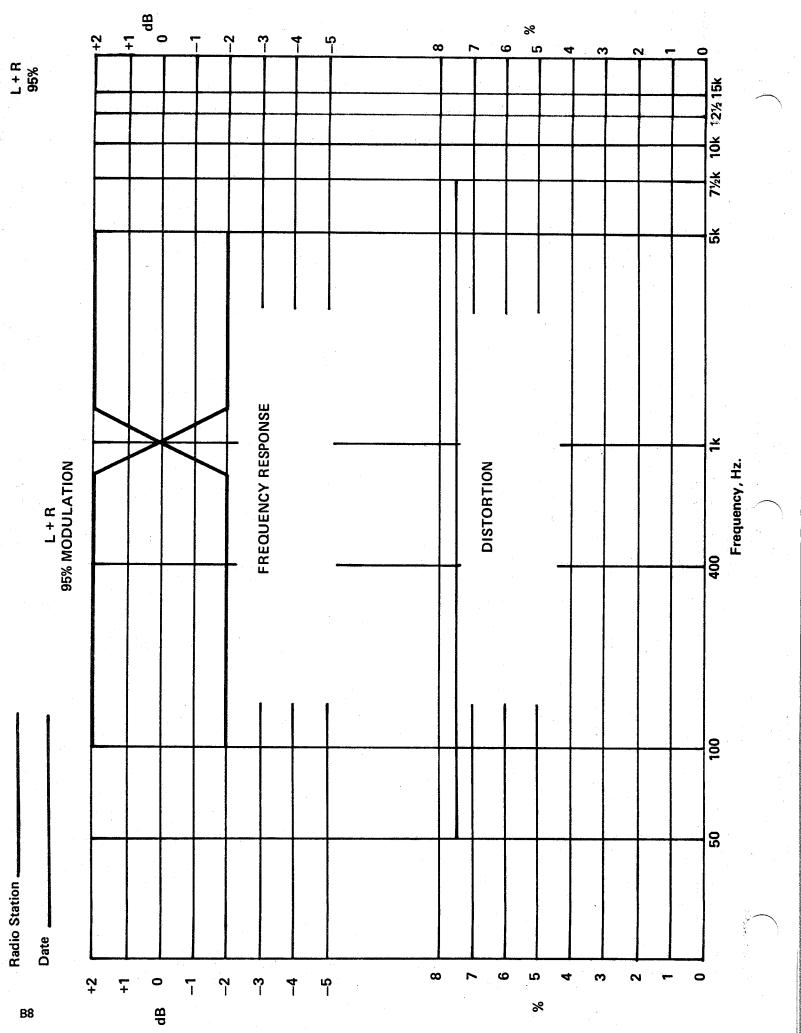
AM STEREO Equipment Performance Measurements

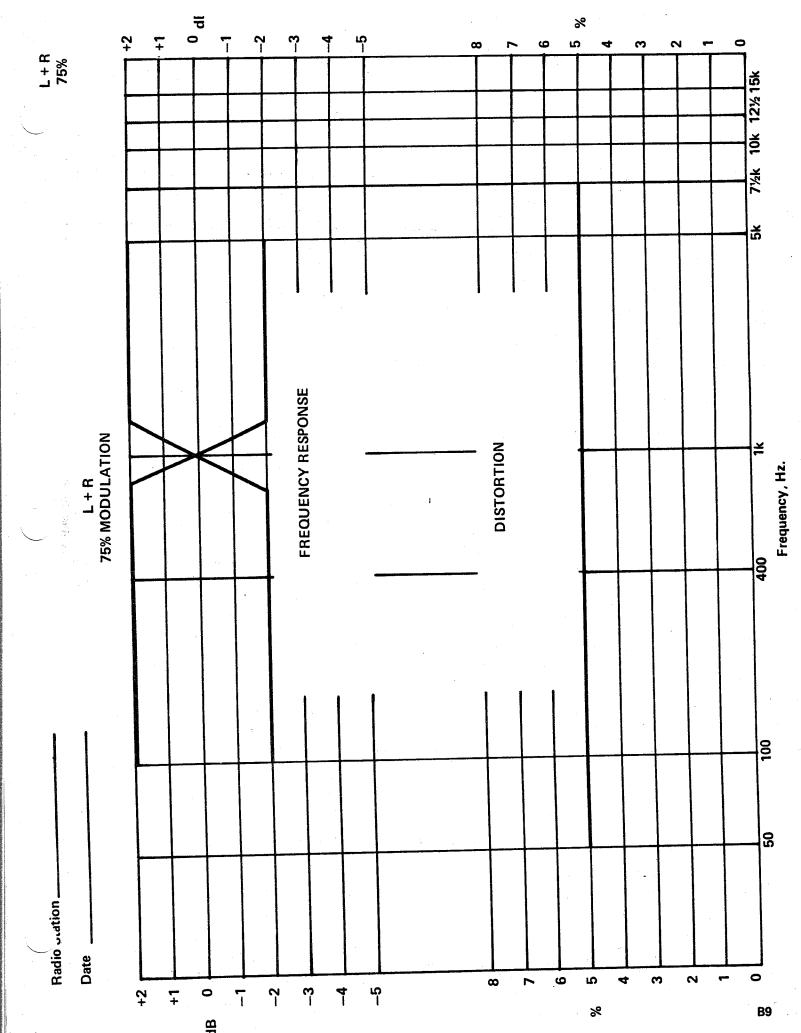
FORMS

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

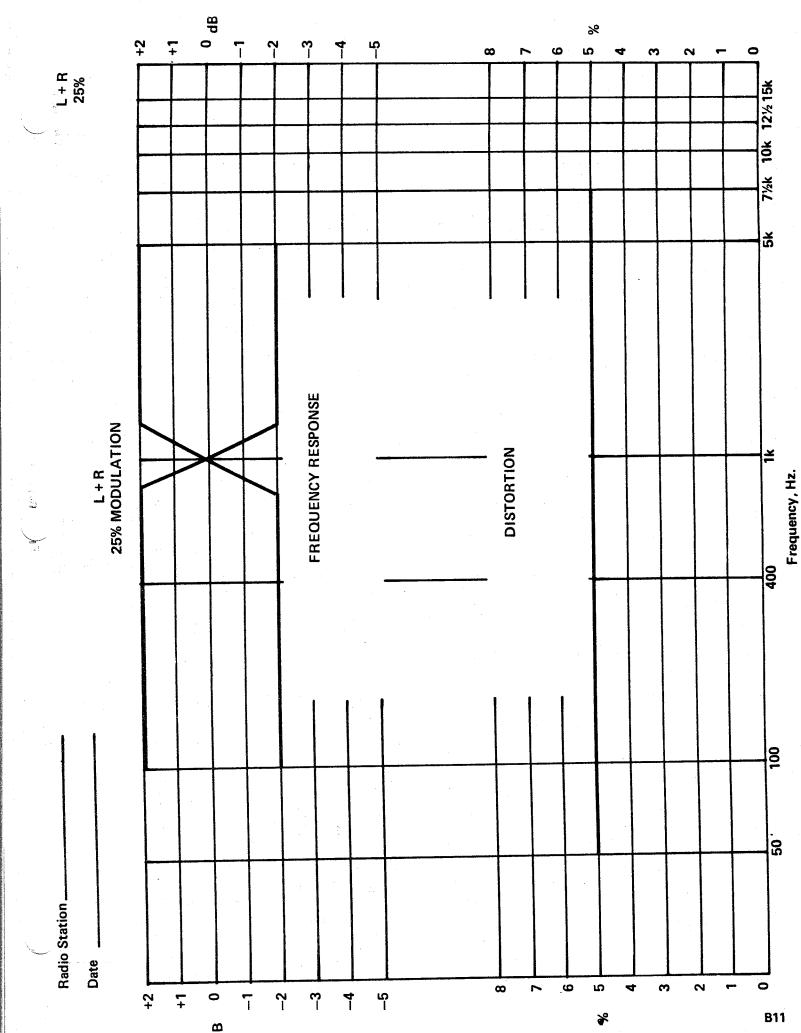
Audio Frequency Response

15k			. 1	<u> </u>	
121/2k					
10k					
71/2K					
<u></u>					
*	0 dB	0 dB	0 dB	0 dB	8 p 0
400					
100					
20					
	L + R, 95% Modulation (± 2 dB, 100 — 5k)	L + R 75% Modulation (<u>+</u> 2 dB, 100 – 5k)	L + R 50% Modulation (± 2 dB, 100 – 5k)	L + R 25% Modulation (<u>+</u> 2 dB, 100 – 5k)	


EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

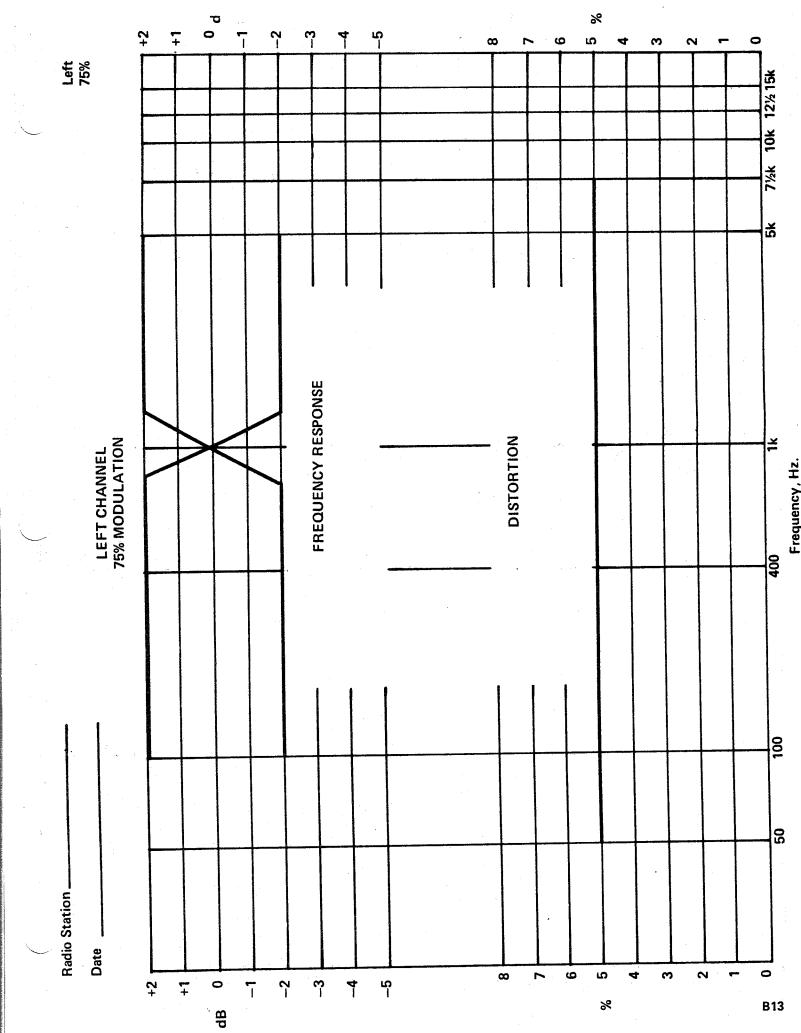

Station_______

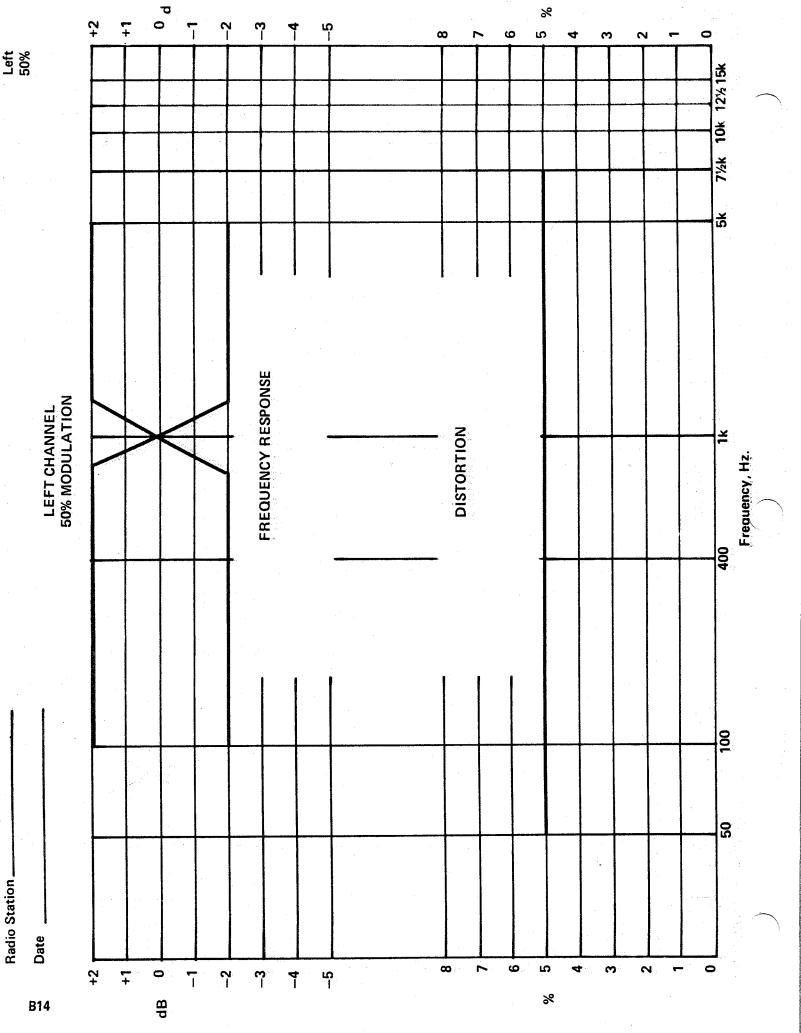
Audio Frequency Harmonic Content (Distortion)

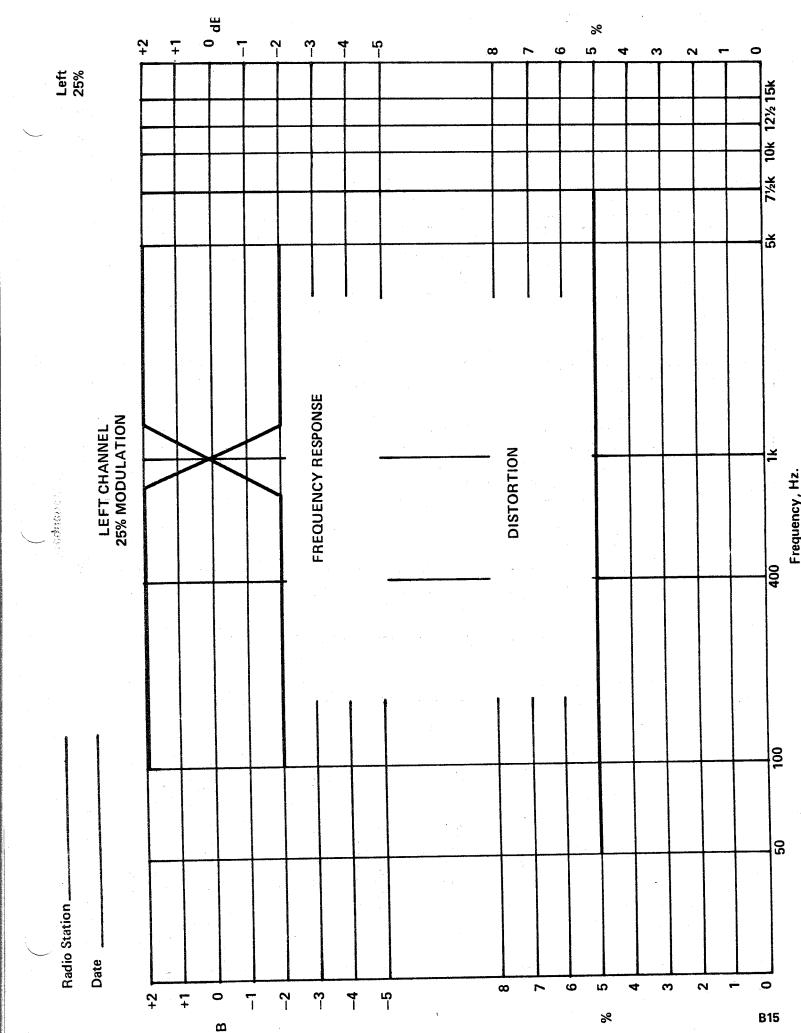

**			
121/2k*			
10k*		- 1 - 2	
7½k*			
ž			
녹			
400			
100			
20			
		•	

L + R, 95% Modulation (7.5% Max.) L + R, 75% Modulation (5% Max.) L + R, 50% Modulation (5% Max.) L + R, 25% Modulation (5% Max.)

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA


Audio Frequency Response & Distortion


_			 	 						
15k					*		*	-	*	
12%k	,				*	- -	*		*	
10k		٠.			*	, Σ	*		*	
7%k		I			*		*		*	
ž			•							
1k		0 dB	ap 0	0 dB						
400										
100										
20		-								
	Response	Left, 75% Modulation* $(\pm 2 dB, 100 - 5k)$	Left, 50% Modulation ($\pm 2 dB$, $100 - 5k$)	Left, 25% Modulation (± 2 dB, 100 – 5k)	Distortion	Left, 75% Modulation* (5%)		Left, 50% Modulation (5%)		Left, 25% Modulation (5%)


* When attainable

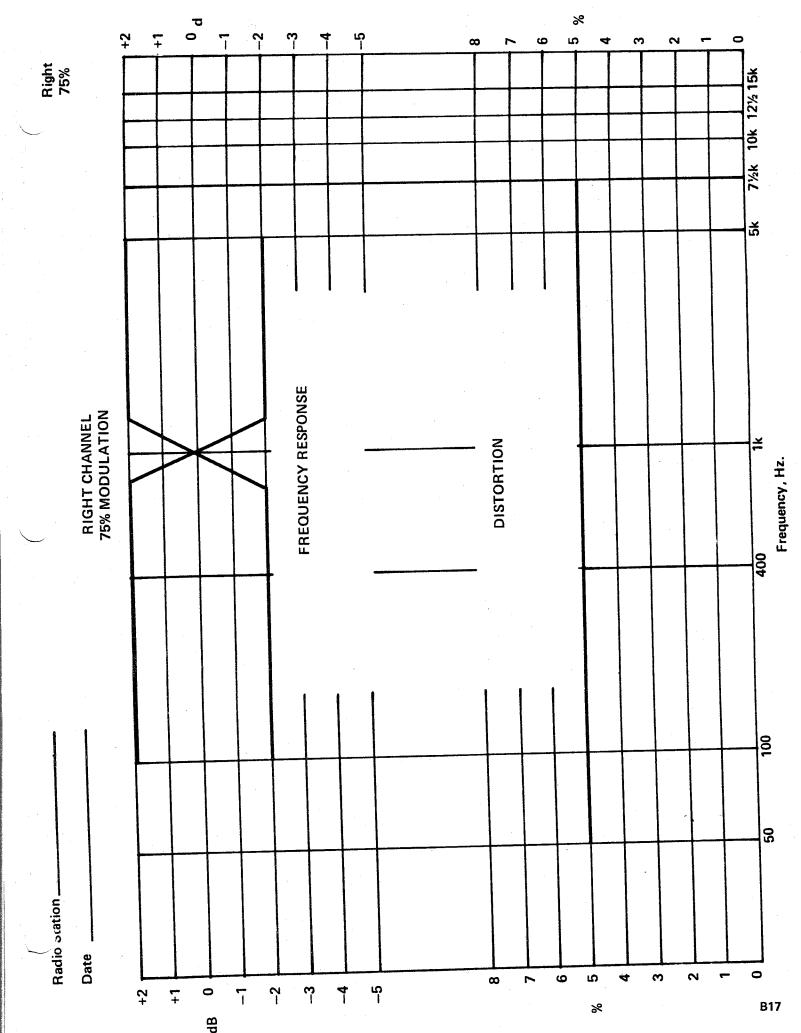
Station

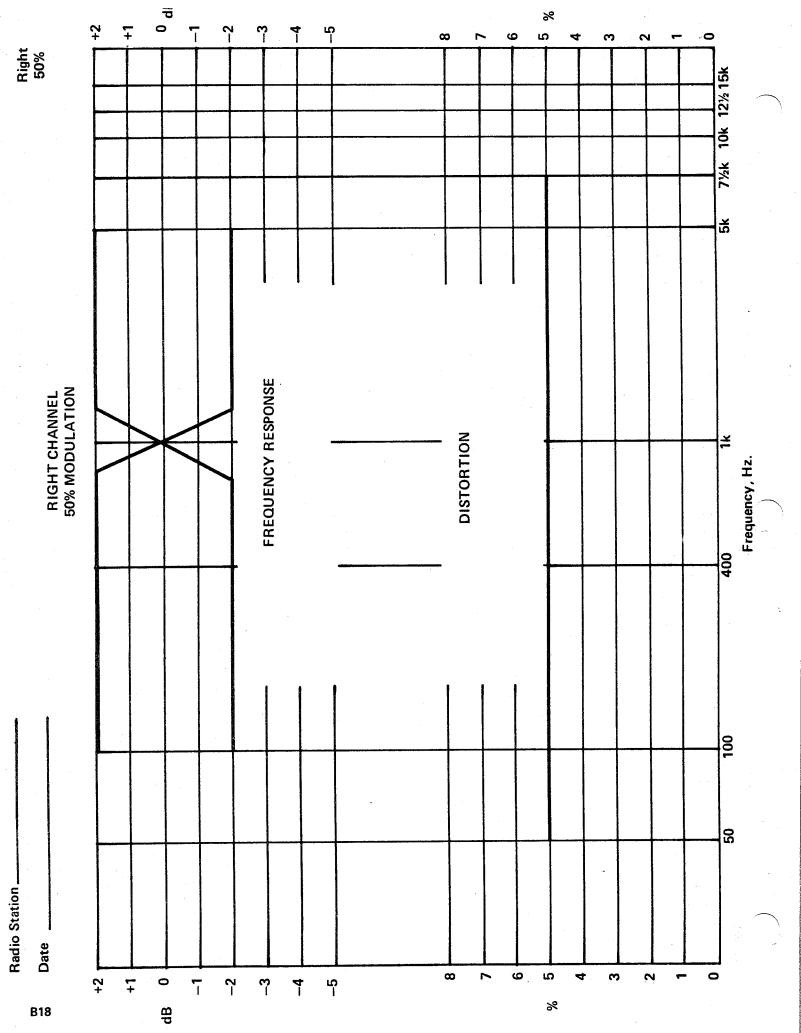
Date__

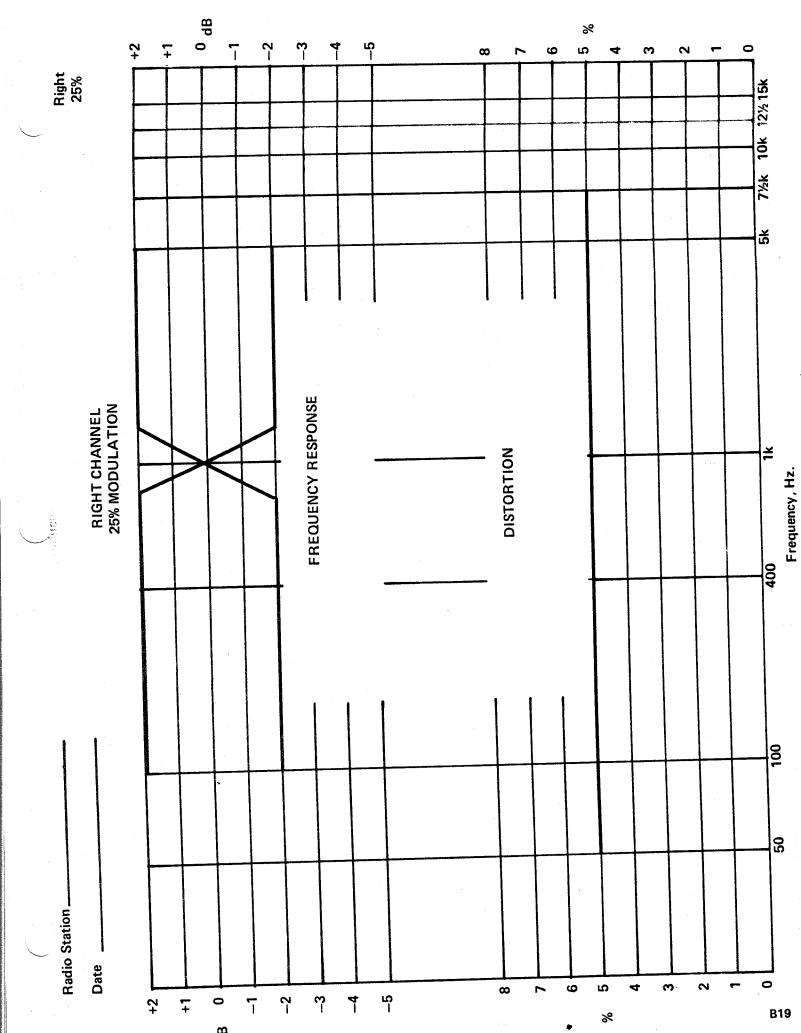
Distortion Response & Right,

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

Audio Frequency Response & Distortion Right


* 漢 12½k * 10× * * 7%K ঠ 0 dB 0 dB 0 dB 半 400 100 20 Right, 75% Modulation* Right, 75% Modultaion* Right, 25% Modulation Right, 25% Modulation (± 2 dB, 100 – 5k) Right, 50% Modulation Right, 50% Modulation (± 2 dB, 100 - 5k) (± 2dB, 100 – 5k) Distortion Response


*When attainable


(2%)

Station.

Date_

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

Station______Date_____

Separation 50% Modulation

13				
12%k				
10k				
7%k		-		
<u>5</u>				
半				
400				
100				
50				
	Separation, Left into Right 50% Modulation	Separation, Right into Left 50% Modulation		

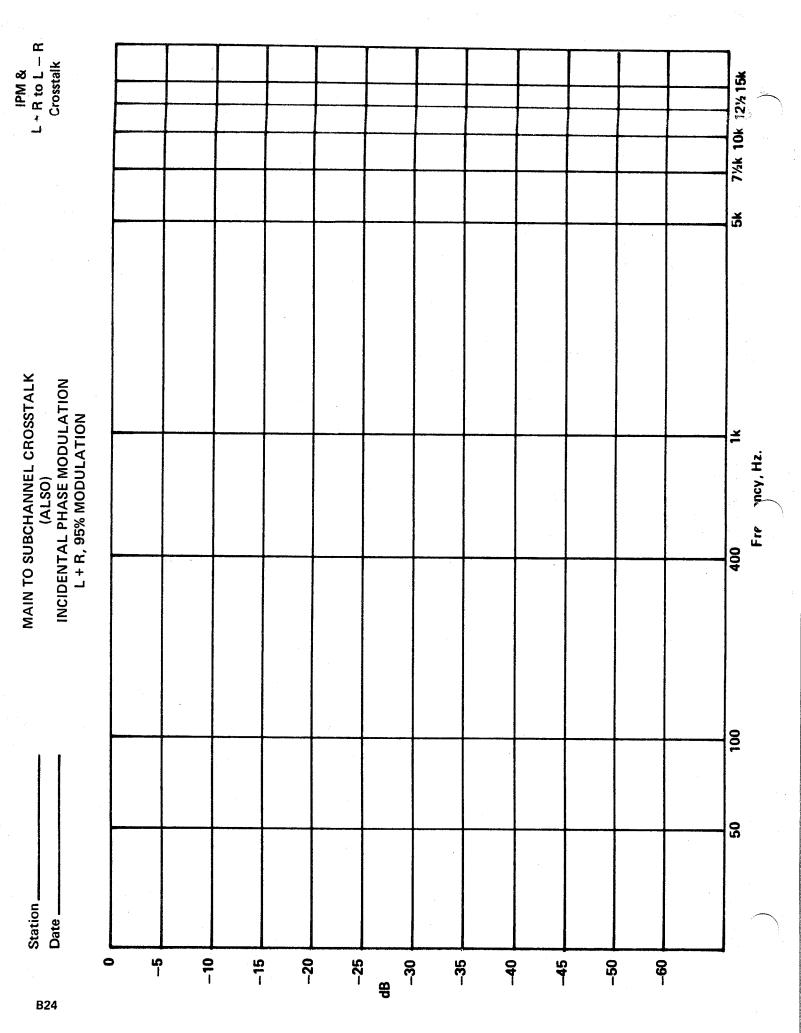
_eft Separation 7½k 10k 12½15k Š After 5 years 0 to 5 years **50% MODULATION** SEPARATION LEFT INTO RIGHT Frequency, Hz. 100 20 Station__ Date_ 09 -20 -45 4 -35 -30 -20 -25 -15 ဌ -10 0

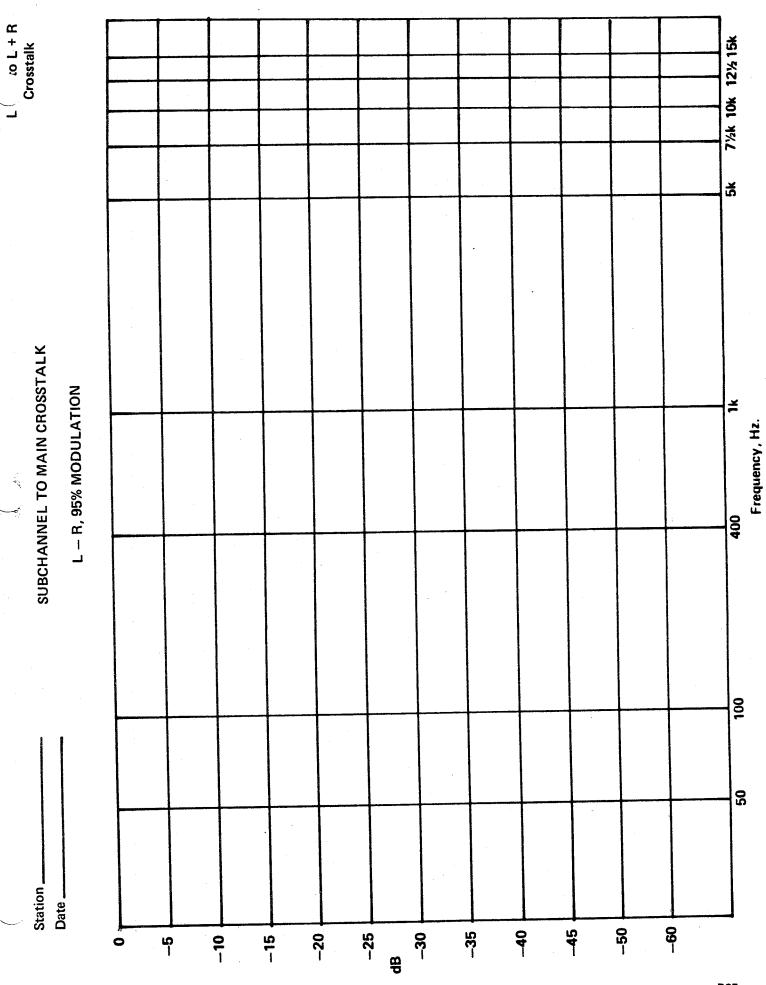
B22

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

Station.

Date_


IPM L+R to L-R & L-R to L+R Crosstalk


Frequency, Hz.

Main to Subchannel Crosstalk in dB (No Specification) 95% L+R Modulation

in Radians. No Specification Incidental Phase Modulation Same as above, expressed 95% L+R Modulation Subchannel to Main Crosstalk No Specification 95% L-R Modulation

15k					
12%k		-			
10k					
71/2k					
5k					
* *					
400					
100					
20					

Station ______

Carrier Shift

L + R, 100% Modulation

L + R, 85% Modulation ______%

L + R, 50% Modulation %

L + R, 25% Modulation _______%

Noise Level Below 100% at 400 Hz. L + R ______ dB
Left _____ dB
Right _____ dB

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

Harmonic and Spurious Observatic L + R, L - R, Left, & Right
エ

Appendix A

FCC REGULATIONS FOR CONDUCTING EQUIPMENT PERFORMANCE MEASUREMENTS

§ 73.1590 Equipment Performance Measurements

- a. The licensee of each AM, FM and TV station, except licensees of Class D non-commercial educational FM stations authorized to operate with 10 watts or less output power, must make equipment performance measurements for each main transmitter as follows:
 - 1. Upon initial installation of a main new or replacement transmitter.
 - 2. Upon modification of an existing transmitter made under the provisions of §73.1690. Modification of transmission systems, and specified therein.
 - 3. Installation of AM stereophonic transmission equipment pursuant to §73.170.
 - 4. Installation of FM stereophonic transmission equipment pursuant to §§73.297 or 73.597.
 - 5. When required by other provisions of the rules or the station license.
 - 6. AM and FM stations (except 10 watt non-commercial educational stations), once each calendar year. (One set of measurements must be made during the 4 month period immediately preceding the filing date of the application for renewal of the station license. Successive measurements are to be made at least annually by the anniversary calendar month, and completed within an additional 2 months, with no more than 14 months between measurements.)
- b. Audio measurements. Audio equipment performance measurements must be made with the equipment adjusted for normal program operation and must include all circuits between the main studio microphone terminals or amplifier input and the antenna circuit, including any correcting equalizer circuits normally used. Any dynamic audio processing or non-correcting equalizers must be disabled or neutralized. The measurements must yield the following information:

1. AM monophonic stations.

- i. Data and curves showing overall audio frequency response from 50 to 5000 Hz for approximately 25, 50, 85 and if obtainable, 100% modulation. A family of curves must be plotted (one for each percentage above) with dB above and below the 1000 Hz reference frequency as ordinate and audio frequency as abscissa.
- ii. Data and curves showing audio frequency harmonic content for 25, 50, 85 and, if obtainable, 100% modulation for the audio frequencies of 50, 100, 400, 1000, 5000 and 7500 Hz (either arithmetical or RSS (root sum square) values up to the 10th harmonic or 16,000 Hz). A family of curves must be plotted (one for each percentage above) with percent distortion as ordinate and audio frequency as abscissa.
- iii. Data showing percentage of carrier amplitude regulation (carrier shift) for 25, 50, 85 and, if obtainable, 100% modulation with 400 Hz tone.
- iv. The carrier hum and extraneous noise level generated within the equipment, and measured throughout the audio spectrum, or bands, in dB below the reference level of 100% modulation by a 400 Hz tone.
- v. Measurements or evidence showing that spurious radiations, including radio frequency harmonics, are suppressed or are not present to a degree capable of causing objectionable interference to other radio services. Field strength measurements are preferred but observations made with a communications type receiver are acceptable. However, in particular cases involving interference or controversy, the FCC may require field strength measurements.

2. AM stereophonic stations.

- i. Data and curves showing the overall audio frequency response from 50 to 15,000 Hz for approximately 25%, 50%, 75% and 100% modulation with equal left and right (L+R) main channel signal; 25%, 50%, and 75% modulation with both a left (L) channel only and right (R) channel only signals.
- ii. Data and curves showing audio frequency harmonic contect for 25%, 50%, 75%, and (main channel only) 100% modulation for the audio frequencies 50, 100, 400, 1000, 5000, and when attainable 7,500, 10,000, 12,500, and 15,000 Hz (either arithmetical or RSS (root sum square) values up to the 10th harmonic or 30,000 Hz) for equal left and right (L=R), left (L) only and right (R) only signals. A family of curves must be plotted as specified in paragraph (b) (1) (ii) above.
- iii. Data showing percentage of carrier amplitude regulation as specified in paragraph (b) (1) (iii) above for main channel modulation with equal left and right (L=R) signals.
- iv. The carrier hum and extraneous noise level generated within the equipment, and measured throughout the audio spectrum, or band, in dB below the reference level of 100% amplitude modulation by a 400 Hz tone for the main, left, and right channels.
- v. Measurements or observations for spurious and harmonic radiations as specified in paragraph (b) (1) (v) above while modulating the transmitter main (L+R) channel, left (L) channel only, right (R) channel only and a stereophonic channel only (L-R) signal. The tests shall be made with the tones and maximum attainable normal modulation as specified in 73.128 (b).
- vi. The degree of incidental phase modulation of the carrier wave, in radians, when the main (L+R) channel is amplitude modulated without pilot tone. The tests shall be made with the tones and maximum attainable modulation levels as specified in (2) (i) of this paragraph.
- vii. The main to stereophonic channel and the stereophonic to main channel crosstalk. The tests shall be made with the tones and maximum attainable normal modulation as specified in (2) (i) of this paragraph.
- viii. In the above measurements, if 100% negative peak amplitude modulation is not attainable, the highest attainable modulation percentage between 95% and 100% modulation shall be used.

FCC MINIMUM PERFORMANCE SPECIFICATIONS FOR AM STEREO

§ 73.40 AM Transmission System Performance Requirements

- a. The design, installation, and operation of a monophonic AM broadcast transmission antenna terminals must meet the following specifications.
- b. The design, installation, and operation of a stereophonic AM broadcast transmission system between audio input amplifiers used for all programming for both the left and right program channels to the transmitting antenna terminals must meet the following specifications.
 - 1. Except when due to equipment failures or other conditions beyond the licensee's control, the transmitter must be capable of operating at the authorized power for each mode of operation, with a main (L+R) channel amplitude modulation not less than 85% and a left (L) only or right (R) only signal of not less than 75% over the audio frequency range from 50 to 5,000 Hz.
 - For main channel modulation only, the transmission system shall meet the distortion specifications
 of paragraph (a) (2) above with harmonics observed to 20,000 Hz. When stereophonic transmission
 is used, the distortion must be measured in the left and right channels separately modulated using a
 suitable stereophonic demodulator.
 - The audio frequency transmitting characteristics for main (L+R), left (L) only and right (R) only
 modulation shall conform to the requirements of paragraph (a) (3) above, except that measurements shall extend to 7,500 Hz.
 - 4. The carrier-amplitude regulation (carrier shift) at any percentage of amplitude modulation by a main (L+R) channel signal shall not exceed 5%.
 - 5. The carrier hum and extraneous noise level, unweighted noise, over the frequency band 50 to 20,000 Hz for main channel (L+R), left (L), and right (R) channels must be at least 45 dB below the reference level of 100% amplitude modulation of the carrier by a 400 Hz tone. Measurements shall be made with a suitable stereophonic demodulator.
 - The incidental phase modulation of the transmitter must be measured with the main (L+R) channel modulated at the audio frequencies and modulation levels specified in paragraph (b) (2) above.
 NOTE: Specifications for incidental phase modulation are not established.
 - 7. For the first five years following installation of stereophonic transmitting equipment, stereophonic separation between left and right stereophonic channels must be at least 15 dB at audio modulating frequencies between 400 and 5,000 Hz. After five years, stereophonic separation between left and right stereophonic channels must be at least 20 dB at audio modulating frequencies between 300 and 5,000 Hz.

§ 73.128 AM Stereophonic Broadcasting

a. An AM broadcast station may, without specific authority from the FCC, transmit stereophonic programs upon installation of type accepted stereophonic transmitting equipment and the necessary measuring equipment to determine that the stereophonic transmissions conform to the modulation characteristics specified for the stereophonic transmission system in use.

- b. The FCC does not specify the composition of the transmitted stereophonic signal. However, the following limitations on the transmitted wave must be met to insure compliance with the occupied bandwidth limitations, compatibility with AM receivers using envelope detectors, and any applicable international agreements to which the United States is a party:
 - 1. The transmitted wave must meet the occupied bandwidth specifications of 73.44 under all possible conditions of program modulation. Compliance with requirement shall be demonstrated either by the following specific modulation tests or other documented test procedures that are to be fully described in the application for type acceptance and the transmitting equipment instruction manual. (See 2.983 paragraphs (d) (8) and (j)).
 - Main channel (L+R) under all conditions of amplitude modulation for the stereophonic system but not exceeding amplitude modulation on negative peaks of 100%.
 - ii. Stereophonic subchannel (L-R) modulated with audio tones of the same amplitude at the transmitter input terminals as in (i) above but with the phase of either the L or R channel reversed.
 - iii. Left and Right Channel only, under all conditions of modulation for the stereophonic system in use but not exceeding amplitude modulation on negative peaks of 100%.
 - 2. The total harmonic distortion as measured by an envelope detector having an input radio frequency bandwidth of 30 kHz (3 dB points) many not exceed 5% for the conditions of modulation specified (1) of this paragraph.
- c. Each licensee or permitee of an AM station engaging in stereophonic broadcasting using a system with a pilot tone shall measure the quiescent pilot tone frequency and injection level and calibrate at intervals as often as necessary to insure compliance with the specifications for the system in use. However, in any event, the measurements shall be made at least once each calendar month with not more than 40 days between successive measurements.

AM STEREO

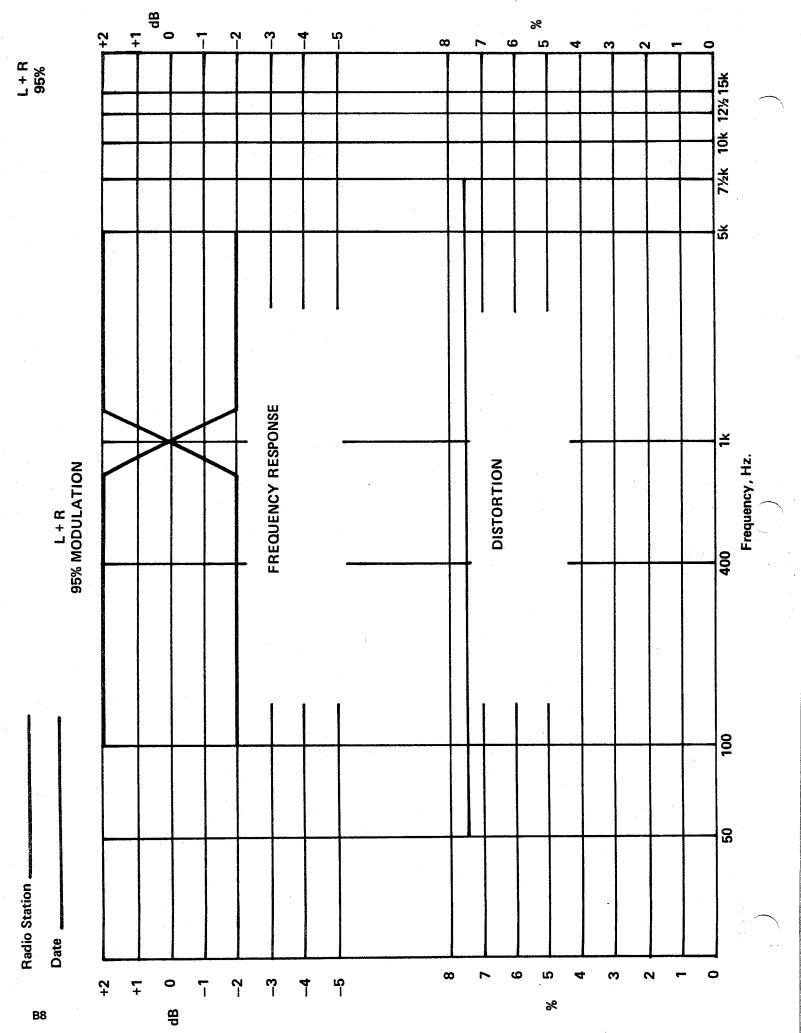
Equipment Performance Measurements

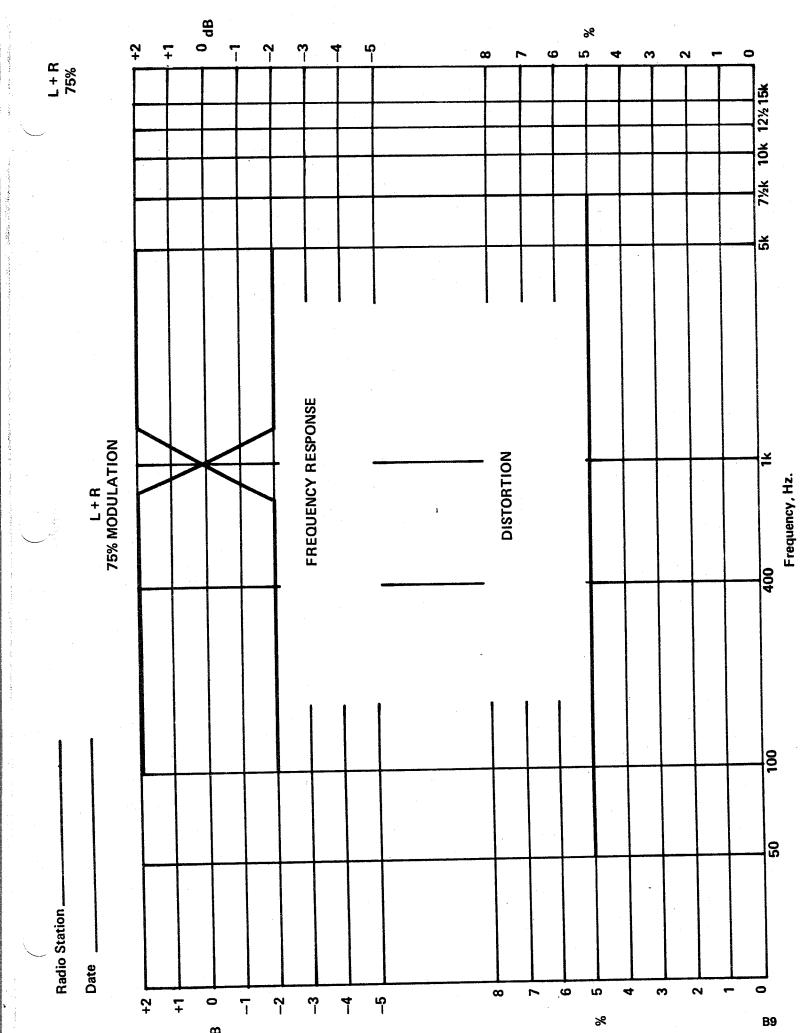
EXTRA FORMS

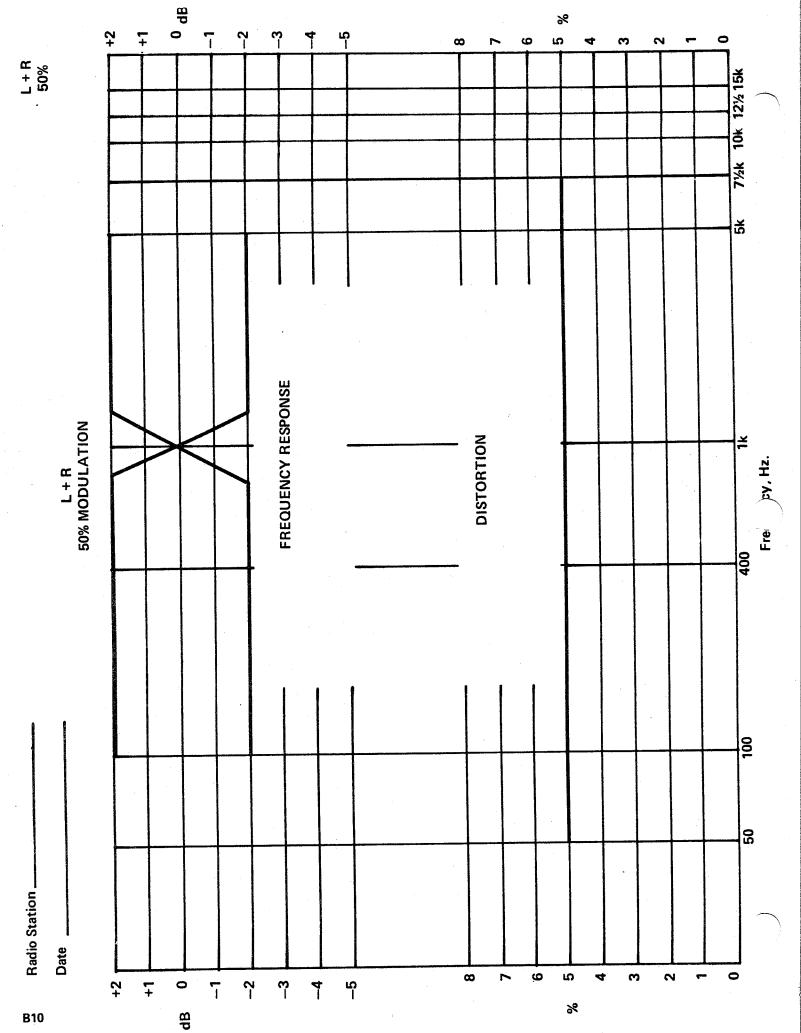
Audio Frequency Response

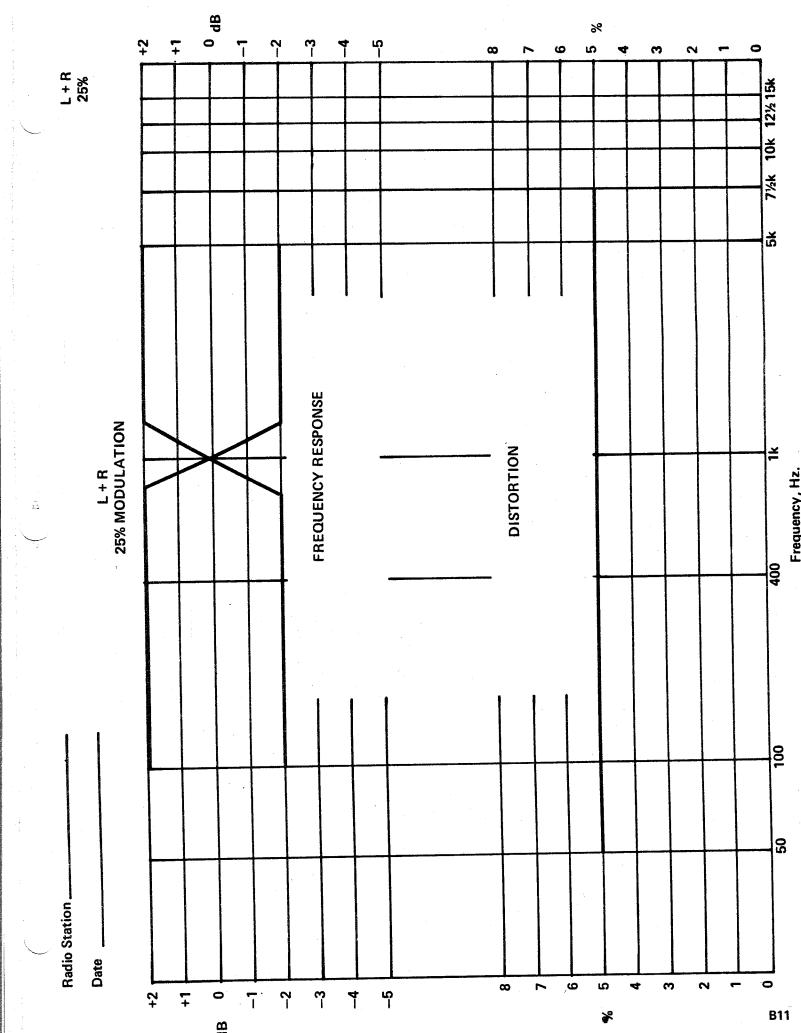
15				
12%k				
10k				
71/2k				
<u></u>				
*	0 dB	0 dB	0 dB	0 dB
400				
100				
20				
	L + R, 95% Modulation (± 2 dB, 100 – 5k)	L + R 75% Modulation (± 2 dB, 100 – 5k)	L + R 50% Modulation (<u>+</u> 2 dB, 100 – 5k)	L + R 25% Modulation (± 2 dB, 100 – 5k)

0 dB


L + R Distortion

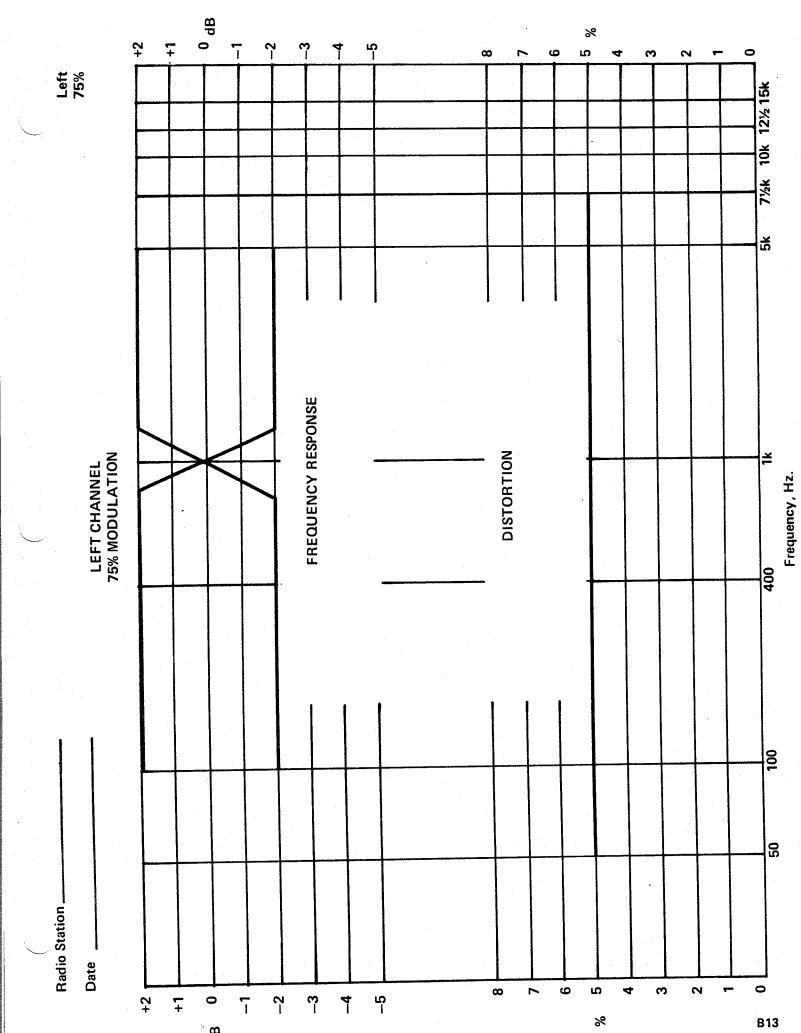

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

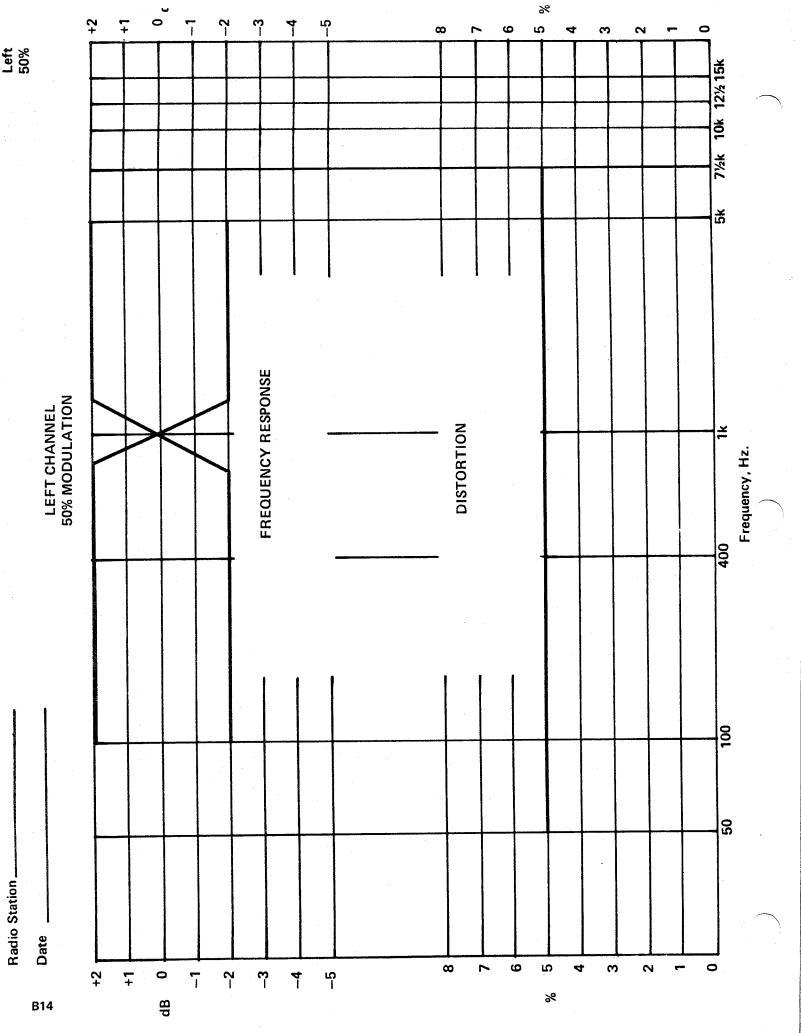

Station_____

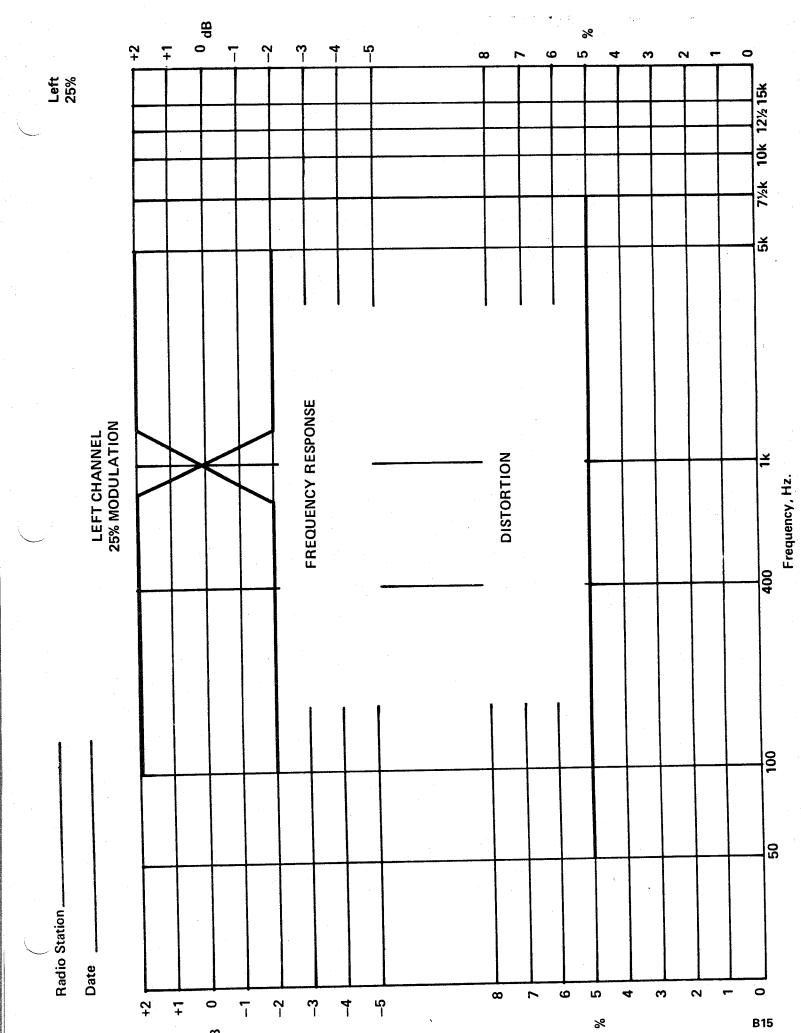

Audio Frequency Harmonic Content (Distortion)

15,*					
12½k*			Į.		
10k*					
7½K*					
쏤					
4					
400					
100					
20					-
	L + R, 95% Modulation (7.5% Max.)	L + R, 75% Modulation (5% Max.)	L + R, 50% Modulation (5% Max.)	L + R, 25% Modulation (5% Max.)	

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

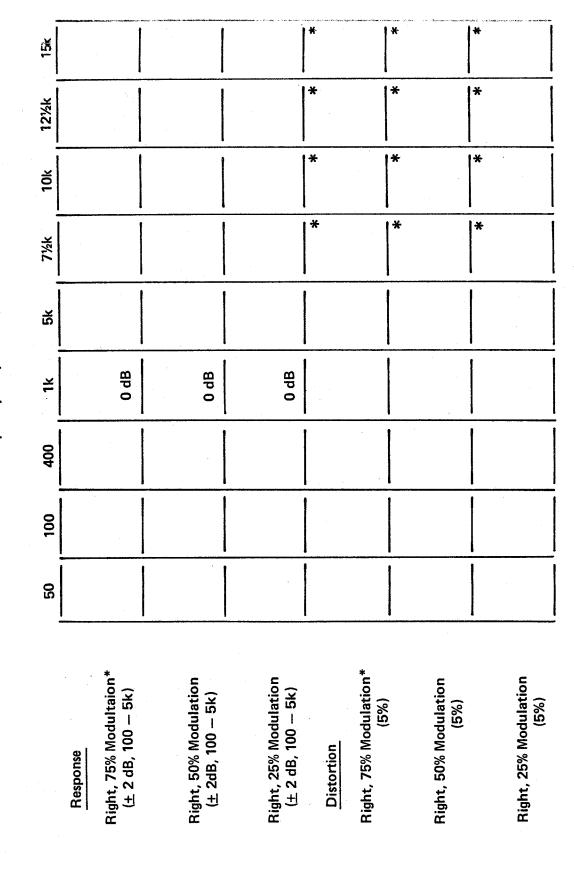

ou


Station_ Date____


Audio Frequency Response & Distortion

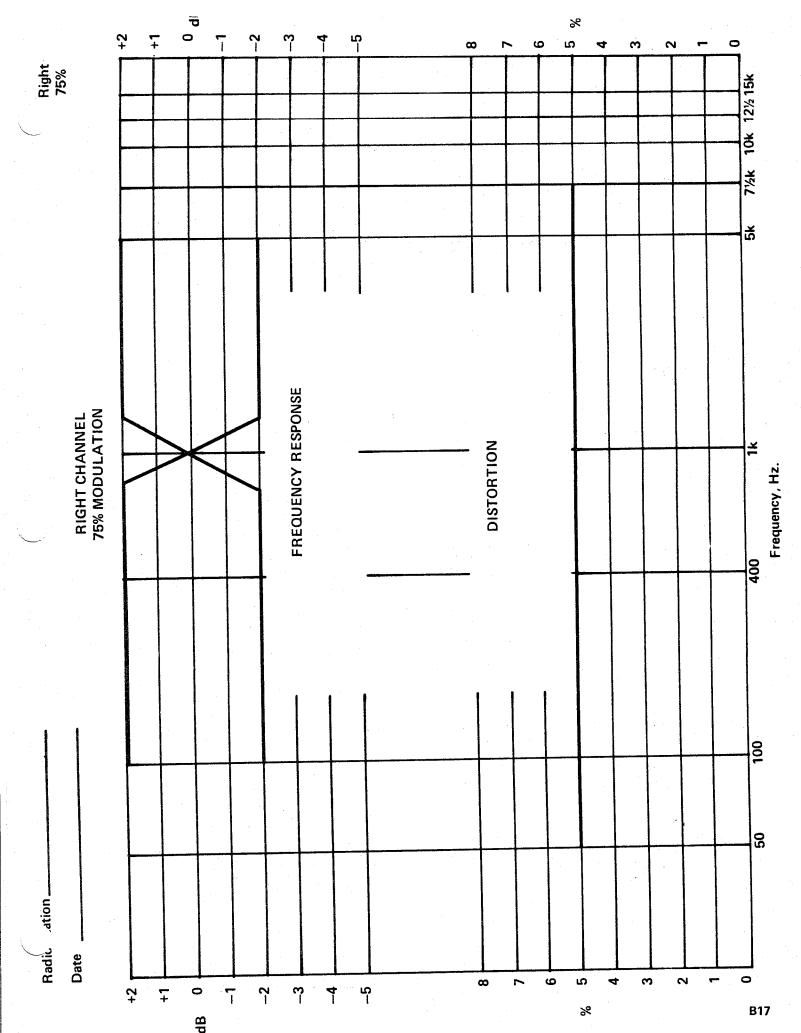
15k						*		*		*	· .
12½k						*	·	*		*	
10k						*		*		*	
71/2k		·				*		*		*	
35							ĺ				
4		0 dB		ap 0	gp 0						
400		,									
100											
50			·				-				
	Response	Left, 75% Modulation* (± 2 dB, 100 – 5k)	Left, 50% Modulation	(± 2 dB, 100 – 5k)	Left, 25% Modulation (± 2 dB, 100 — 5k)	Distortion	Left, 75% Modulation* (5%)	l eft 50% Modulation	(2%)		Lett, 25% Modulation (5%)

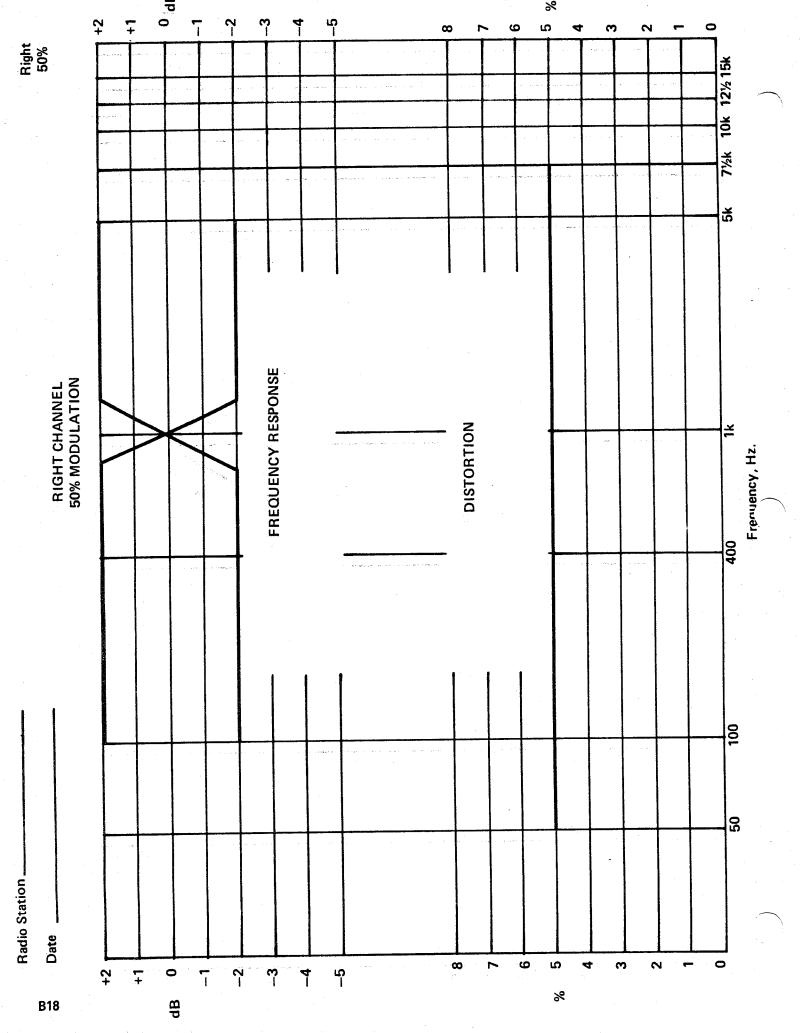
* When attainable

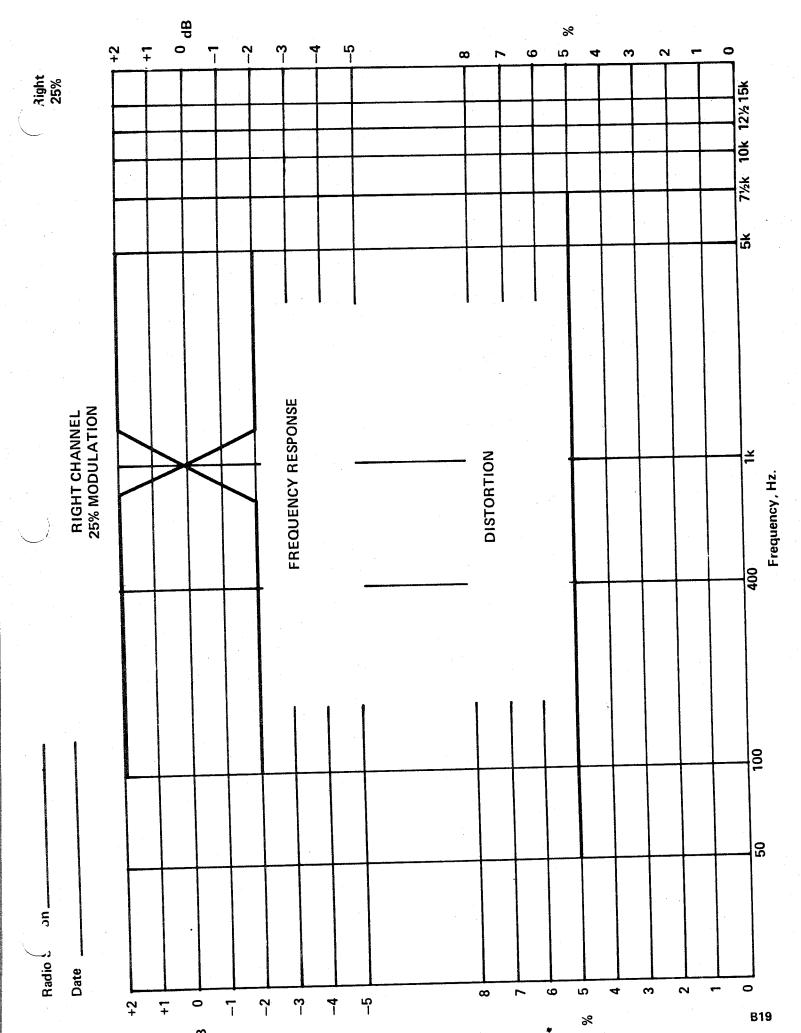


Response & Distortion Right,

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA


Audio Frequency Response & Distortion Right




*When attainable

Station_

Date__

ភ្ល

12½k 10<u>k</u> EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA 7½K Separation 50% Modulation 첪 ***** 400 100 20 Separation, Right into Left 50% Modulation Separation, Left into Right 50% Modulation Station_ Date_

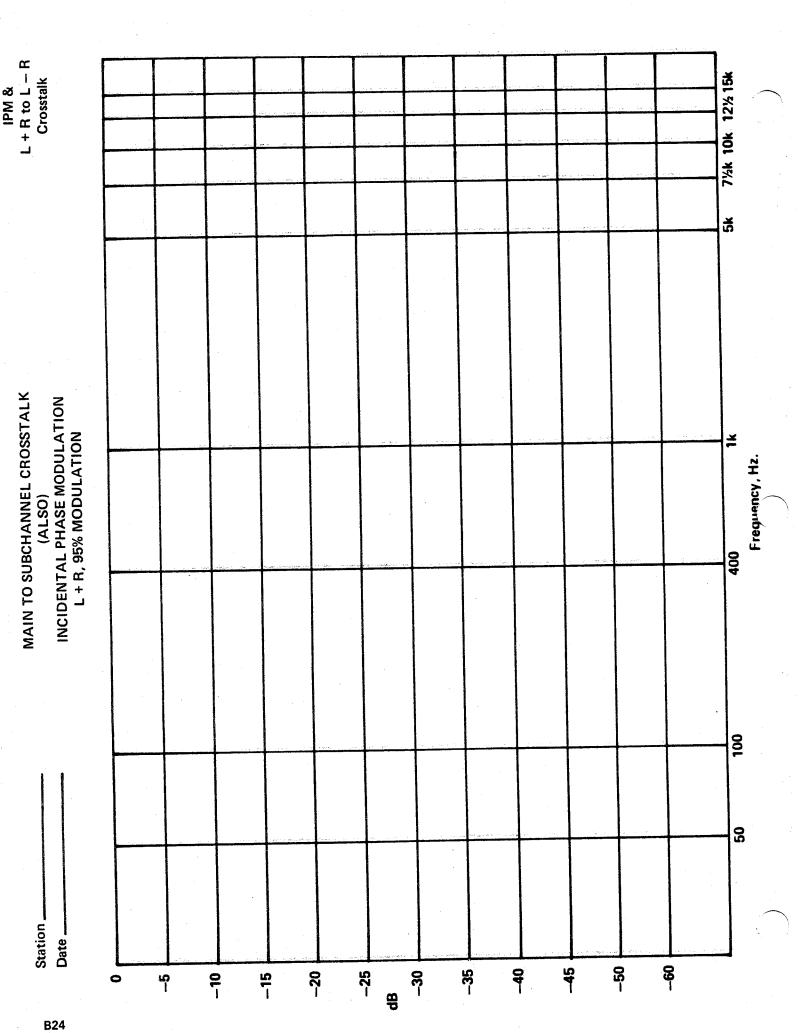
eft ration 7%k 10k 12%15k 첪 After 5 years 0 to 5 years **50% MODULATION** SEPA . FION LEFT INTO RIGHT Frequency, Hz. 100 20 Date _ Stati -20 09--45 -40 -35 -25 -30 -20 15 12 -10 0

B22

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

Station_

Date__


IPM L+R to L-R & L-R to L+R Crosstalk

Frequency, Hz.

15k		,	
121½k			
10k			
71/2k			
5k			·
1k			
400			
100			
20			

in dB (No Specification)
95% L+R Modulation
Incidental Phase Modulation
Same as above, expressed
in Radians. No Specification
95% L+R Modulation
Subchannel to Main Crosstalk
No Specification
95% L—R Modulation

Main to Subchannel Crosstalk

L - >L+R L stalk 7%k 10k 12%15k 5k SUBCHANNEL TO MAIN CROSSTALK L – R, 95% MODULATION Frequency, Hz. 100 20 Date_ <u>9</u> 45 -20 -25 Ő 2 -10 -20 -30 -35 9

Station

Date

L + R, 100% Modulation

L + R, 85% Modulation

L + R, 25% Modulation

Below 100% at 400 Hz. Noise Level

фB ф L + R_ Left_

фB

Right_

% % % % L + R, 50% Modulation Carrier Shift

EQUIPMENT PERFORMANCE MEASUREMENTS TABULATION OF DATA

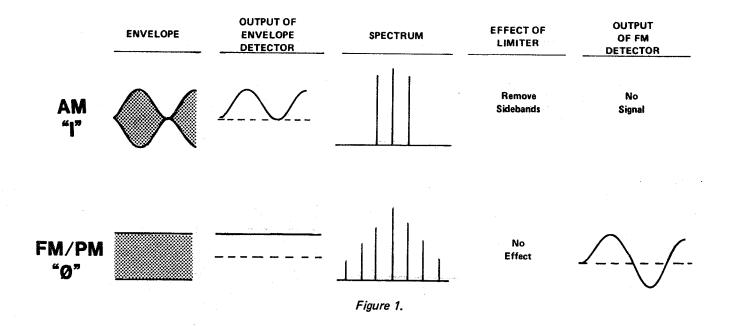
Harmonic and Spurious Observations, L+R, L-R, Left, & Right

Introduction to the Motorola C-QUAM AM Stereo System

WHAT IS C-QUAM?

C-Quam is a system using amplitude modulation for the main (L + R) signal, and a quadrature type of phase modulation for the stereo information. Quadrature combines two signals at a phase angle of 90 degrees for transmission, and then at the receiver separates them again. It is another form of multiplexing. This technique is used to transmit the color information in the U.S. TV color system and is used for encoding of SQ and QS quadraphonic records. In the application to AM stereo, quadrature is really transmitting two AM signals on the same channel. For relatively narrow bandwidth applications such as we have with AM radio, AM is really the most efficient emission because amplitude modulaton requires the minimum bandwidth and it is independent of noise. What this means is that in an AM receiver, the effective background noise remains the same with or without modulation. This is not so with FM or PM, which under modulation, "kicks up" additional noise not present under no modulation conditions. So in AM quadrature, an additional channel can be created and heavily modulated without "kicking up" excessive noise. In other words, for narrow bandwidth communications systems, there is a signal to noise advantage to using AM quadrature.

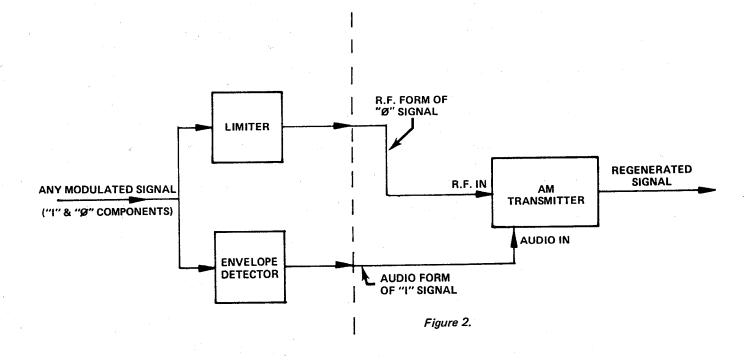
Another important point for AM stereo is the long transmission path from the transmitter, through a directional antenna, over a difficult propagation path, and through a narrow bandwidth and possibly mistuned receiver, is a very rough one. In order to be demodulated with the least distortion and maintaining separation, the signal must be very resilient . . . able to withstand the difficult transmission experience. This also is best done with AM quadrature because two of the same type of signals are being transmitted and therefore undergo the same type of distortions which can in many instances be canceled at the other end. In other words, for AM stereo the differences between the two signals must be preserved, and if each undergoes the identical distortions during transmission, the differences between the two signals will be maintained. This is another reason why the AM/PM and AM/FM stereo systems are not very good because distortions to the AM component are very different from the distortions to the PM or FM component during transmission, and the result is a much more distorted AM stereo signal.


Although many have tried to use AM quadrature for AM stereo, the most difficulty is encountered when modifications are made to make it compatible with envelope detectors in existing AM radios. The Motorola scientists and engineers found a way of taking advantage of the quadrature characteristics, while transmitting a compatible AM component.

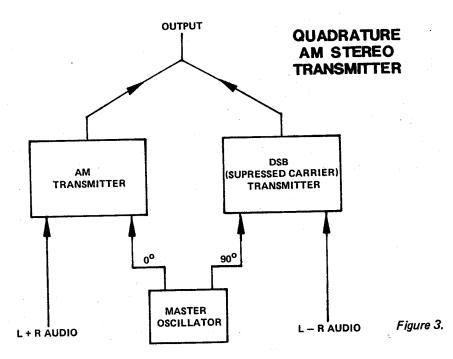
THE NATURE OF AM AND FM SIDEBANDS

In order to describe the system, some basics must be understood about certain types of modulation and how it is detected or not detected. To check our understanding, let's look at two basic types of transmission, AM and FM, modulated by a very low distortion sine wave.

When a signal is amplitude modulated by a sine wave, we can describe it in several ways. One is to simply look at the amplitude and trace it vs. time. This would be the typical display on an oscilloscope of the R.F. envelope. See Figure 1. Another is to look at it on a spectrum analyzer which would show three vertical lines, in the center, a taller line representing the carrier, and the two sidebands, lesser in amplitude, shown on either side of the carrier. In these two representations, there is no phase information given but for now think of the two sidebands as being in-phase sidebands or "I" no phase information given but for now think of the two sidebands as being in-phase sidebands or harmonics of the primary AM sidebands and there is no net phase modulation of the total of the carrier and the two sidebands.


The other case, FM (or PM) is where the phase or frequency is modulated according to our low distortion sine wave, and let's say the deviation is at least a few kHz. In this case, the R.F. envelope does not vary and the A.C. output of the envelope detector would be zero. The spectrum, however, would usually consist of a component at the carrier frequency and a family of sidebands located at multiples of the modulating frequency away from the carrier. For instance if the carrier frequency was 1000 kHz, and the modulation was 1 kHz, there would be symmetrical sidebands at 999, 1001 and at multiples of 1 kHz that are significant.

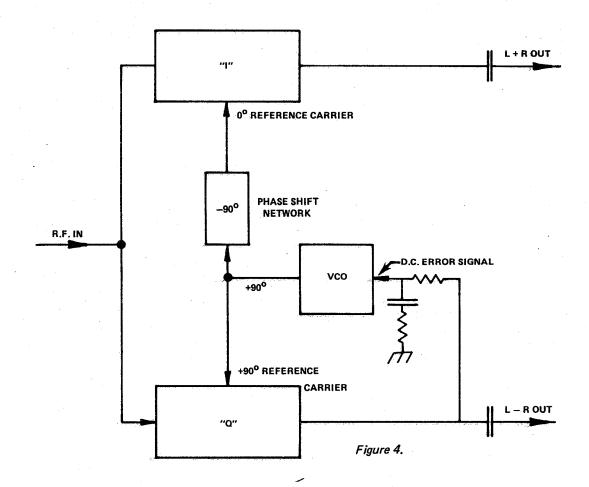
If there is a carrier and sidebands, why doesn't the envelope detector detect the modulation? The reason is that in FM and PM, the instantaneous phase and amplitude of the carrier component and all the sidebands always add up to the same power as the unmodulated carrier. As the modulation is turned up, the carrier is reduced in amplitude and the missing carrier power is given to the sidebands, but the sum total at all times remains the same. It is the phasing of the sidebands that determines whether they will add and subtract with the carrier to produce differences in amplitude or whether they will add and subtract with the carrier component to always give the same amplitude. In the case of FM or PM, let's call the sidebands phase or "Ø" (phi) sidebands.


Now, the interesting thing is that "Ø" sidebands don't need a linear amplifier to be amplified and can be crunched to death by limiters and class C amplifiers and the same spectrum still comes out the other end. On the other hand "I" sidebands must have linear amplification in order to survive and can be totally stripped from the signal by a good limiter. An envelope detector will be blind to the existence of perfect PM or FM sidebands, and a phase or frequency demodulator will not see perfect "I" sidebands or amplitude modulation.

Another interesting fact is that all modulation can be represented by a combination of the "I" sideband components and the "B" sideband components. This is very important in AM stereo broadcasting because it is necessary to split any of the AM stereo system's signals into the "I" and "B" signals for transmission on an existing AM transmitter. See Figure 2. For all systems, the "I" signal is given to the transmitter in audio form at the audio input to the transmitter and then it amplitude modulates the signal in the normal way recreating an AM or an "I" sideband signal. For all systems, the "B" components are fed to the transmitter in R.F. form as a phase modulated signal that replaces the crystal oscillator in the transmitter. Of course the "B" signal sidebands can pass through the intermediate and final amplifier R.F. stages of the transmitter even though these stages are non linear and usually operate class C. The Motorola AM stereo system also required that it be reconstructed for such transmission but certain modifications are made for compatibility with the millions of existing AM radios.

PURE QUADRATURE

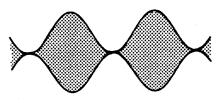
Observe Figure 3. Pure AM-AM quadrature can be generated by two transmitters connected so that their outputs add. One transmitter would be a standard AM generator producing the carrier at, let's say, zero phase, and sidebands associated with that carrier ("I" sidebands). A second transmitter is fed from the same master oscillator as the AM transmitter, but the phase is shifted 90 degrees. Because we already have a full carrier at zero degrees phase from the AM transmitter providing a phase reference for the receiver, the second transmitter does not need a carrier and is set up with a balanced modulator canceling out the carrier and producing only sidebands. Because these sidebands are generated from a carrier which is 90 degrees out of phase from the AM transmitter, these sidebands will be 90 degrees out of phase with the AM sidebands and "in quadrature." These become our "Q" sidebands.


If we wanted to make an AM stereo system we could transmit L+R into the AM transmitter, and L-R into the double sideband transmitter. Sounds good, but under left or right only conditions where both transmitters are contributing sidebands to the output, the resultant would be a distorted AM signal. Before we look at why, let's take a look at a quadrature demodulator which is also the widely touted synchronous detector.

THE QUADRATURE (SYNCHRONOUS) DETECTOR

To recover the audio signals separately at the receiver, a system of phase detectors is arranged. See Figure 4. First, a reference phase must be derived from the transmitted signal. This is the reference carrier which is generated by means of a phase locked loop (PLL).

The device that is primarily responsible for the operation of the synchronous detector is the balanced demodulator or product detector. When this device is given an input signal and a reference carrier, it will provide at its output the difference of the two signals. If the two signals are identical in frequency and 90 degrees out of phase, the output will be zero. If there is a constant difference in phase it will give a D.C. output or if the phase is varying it will give an A.C. output. The D.C. output of the "Q" detector is fed back to a voltage controlled oscillator (VCO) which causes the frequency and phase of that oscillator to zero in on the input carrier frequency and phase and then lock to it.


This provides the phase reference for the "I" and "Q" detectors. The A.C. output from the "I" demodulator provides the original L+R audio from the AM transmitter, but it does not see the "Q" sidebands from the double sideband transmitter. The second demodulator is also fed from the VCO but its carrier reference signal is automatically shifted 90 degrees. Therefore it sees the "Q" sidebands from the double sideband transmitter and sees nothing from the AM transmitter input audio which is L+R.

The AM-AM quadrature system would be excellent for AM stereo except that the envelope detectors in normal AM radios don't see only the "I" sidebands or the "Q" sidebands but see the simple vector addition of both. The envelope detector is not capable of seeing any phase information and only sees the RMS total of the modulation and carrier regardless of phase.

Under L + R (L = R) only modulation conditions (monaural), there is no problem, because only the AM transmitter is modulated and the envelope detector recovers AM perfectly. (The double sideband stereo transmitter receives no audio because when L = R, L - R = 0.) However, under stereo conditions, for instance, when L only is transmitted, full sideband components are contributed by both the AM and double sideband transmitters and the envelope looks like Figure 5. This would not be compatible with existing envelope detector receivers and a very distorted signal would be heard.

QUADRATURE MODULATION ENVELOPES

L + R MODULATION

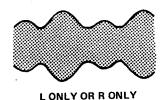
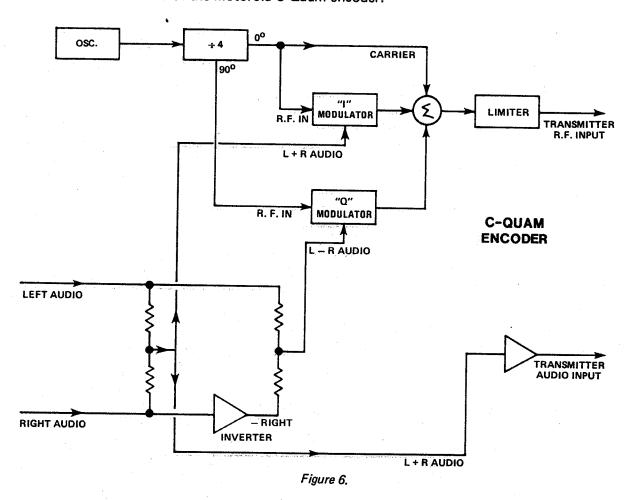


Figure 5.

COMPATIBLE QUADRATURE

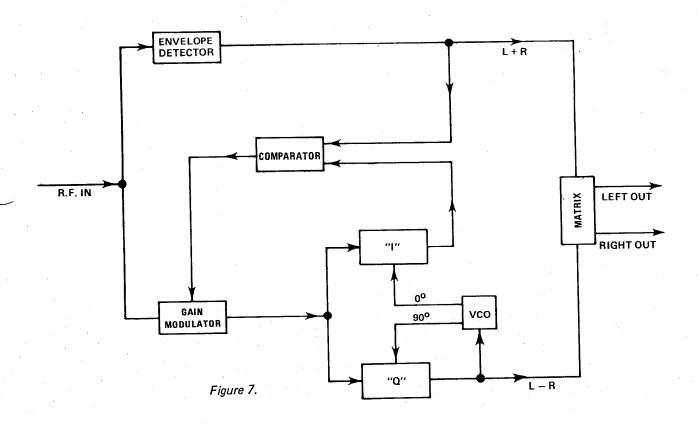

The Motorola AM stereo system is not complicated at all. It simply takes a pure quadrature signal as just described, and extracts the phase modulation components of the quadrature signal and phase modulated the broadcast transmitter. At the same time it sends L + R audio to the audio input of the transmitter as usual. That's it! The advantage is that a very nice AM signal is always transmitted so that the envelope detectors are compatible, but that the phase modulation of the carrier is derived from a pure quadrature modulation. The result is a signal with most of the advantages of quadrature modulation while maintaining all important monaural compatibility.

THE C-QUAM ENCODER

The C-Quam encoder is diagramed in Figure 6. Note that pure quadrature is generated by taking L + R and L — R and modulating two balanced modulators fed with R.F. signals out of phase by 90 degrees. In this case the 90 degrees phase shift is derived by using a Johnson counter which divides an input frequency (four times station carrier frequency) by four and automatically provides digital signals precisely 90 degrees out of phase for the balanced modulators. The carrier is inserted directly from the Johnson counter. At the output of the summing network, the result is a pure quadrature AM stereo signal. From there it is passed through a limiter which strips the incompatible AM components from the signal and leaves only the phase modulation "g" sidebands. This is not the same as the simple output of the "Q" modulator because the addition of the "I" and "Q" balanced modulators produced some phase shifting not present in the "Q" modulator alone. The output of the limiter is amplified and sent to the broadcast transmitter in place of the crystal oscillator.

The left and right audio signals are precisely added and sent to the audio input terminals of the broadcast transmitter.

That's the essence of the Motorola C-Quam encoder.



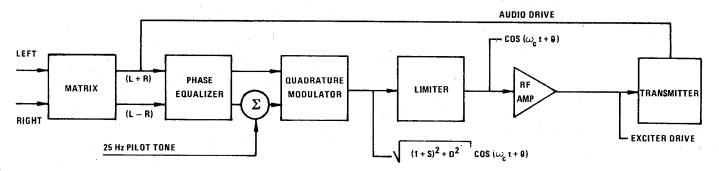
DECODING C-QUAM

C-Quam is decoded by simply converting the broadcast signal which is already "almost" quadrature to quadrature and then using a quadrature detector to extract L-R. Refer to Figure 7. Note that the demodulator contains a section which is the pure quadrature demodulator as previously described. In order to prepare the broadcast signal for the quadrature demodulator, it has to be converted from the envelope detector compatible signal which is broadcast, to the original quadrature

signal that was not envelope detector compatible. This is done by demodulating the broadcast signal two ways; with an envelope detector, and with an "I" detector. The two signals are compared and the resultant error signal is used to gain modulate the input of the "I" and "Q" demodulators.

When the transmitted signal is L + R (monaural, no stereo) the transmitted signal is pure AM or only "I" sidebands. In this case the envelope detector and the "I" demodulator see the same thing. There is no error signal, the gain modulator does nothing and the signal passes through without change. However, when a left or right only signal is transmitted, both AM and PM is transmitted and the input signal is shifted in phase to the "I" demodulator and loses some of its "I" amplitude. The envelope detector sees no difference in the AM because of the phase modulation, and when the envelope detector and the "I" demodulator are compared, there is an error signal. The error signal AGC's the input level to the detector. This action makes the input signal to the "I" and "Q" demodulators look like a pure quadrature signal and the "Q" audio output gives a perfect L — R signal. The demodulator output is combined with the envelope detector output in a matrix to give left and right audio outputs.

SYSTEM PERFORMANCE UNDER HEAVY MODULATION


There are many advantages of the Motorola system. One is its performance under 100 percent negative amplitude modulation conditions. When the carrier momentarily becomes small as in 100 percent negative modulation, the output of the envelope detector also becomes small. Because of the action of the comparator and gain modulator, the output of the "I" demodulator is small. Simultaneously, the output of the "Q" demodulator also is forced to be small. This means that there will be no large noise popping from the stereo channel under heavy negative amplitude modulations.

APPENDIX

The following is a more detailed mathematical description of the C-Quam system.

ENCODING COMPATIBLE QUADRATURE MODULATION

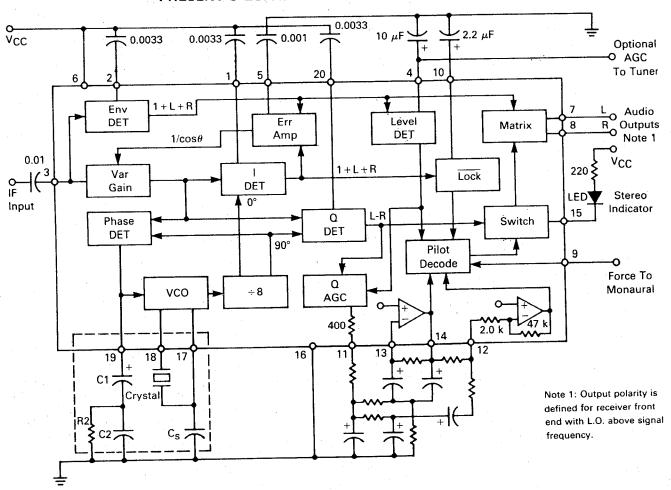
The existing RF oscillator of the transmitter is replaced by a substitute reference which has the angular modulation of a quadrature signal. The existing AM modulation technique is basically unchanged.

Note that the audio modulation sum information is unchanged from the monaural case and that a quadrature phase modulated RF drive is substituted for normal RF drive. The only other change is the presence of a Phase Equalizer to compensate for the differences in Amplitude/Phase relationships between the audio signal path and the RF path. This is necessary to maintain separation over a wide bandwidth.

Any suitable stereophonic audio processors may be used.

DECODING THE COMPATIBLE QUADRATURE SIGNAL

The received compatible quadrature signal is a quadrature signal which has been modulated by the cosine of its relative phase angle information. It is also a compatible envelope detector signal. Therefore, sum information may be decoded with either an envelope detector or with a synchronous detector that is inversely modulated by the cosine of the phase modulation. Difference information may be decoded with a synchronous quadrature demodulator which is in inversely modulated by the cosine of the phase modulation. In fact, there exists a multiplicity of decoding methods since:


$$L - R = (1 + S)\tan \theta = \frac{(1 + S)\sin \theta}{\cos \theta}$$

Where: S = L + R

Hence, any sequence of operations which results in L-R is a valid decoding algorithm. Even non-PLL decoders are allowed since a discriminator, integrator, tangent function sequence results in L-R.

Motorola has evolved a first generation decoder design already discussed, which maximizes performance benefits at a minimum of cost and adjustments. Second and third generation decoders are under development which will further advance the state of the art.

PRESENT C-QUAM RECEIVER DECODER IC

SIGNAL EQUATION FOR MOTOROLA COMPATIBLE QUADRATURE SYSTEM

$$E_{c} = A_{c} (1 + M_{s} (L(t) + R(t)) \cos \left[\omega_{c} t + \tan^{-1} \left\{ \frac{M_{d} (L(t) - R(t)) + .05 \sin 50 \pi t}{1 + M_{s} (L(t) + R(t))} \right\} \right]$$

where:

 M_s = index of modulation for sum information M_d = index of modulation for difference information .05sin $50\pi t = 25$ Hz. pilot tone.

INCIDENTAL PHASE MODULATION

Engineers and technicians associated with AM stereo constantly use the buzz letters "IPM." You may realize that these letters stand for (Incidental Phase Modulation)... but what is it? Simply defined, it is the un-intentional phase modulation of an RF carrier. An envelope modulated carrier (amplitude modulation) should not contain phase modulation. The normal envelope detector in the average AM receiver is oblivious to moderate amounts of phase modulation, as is most of the test and monitoring equipment in the average AM radio station. The addition of AM stereo (phase channel) to a transmitter makes it mandatory that IPM be reduced to an absolute minimum. That phase channel will now be used to transmit program material, and the incidental (un-intentional) modulation must be removed. Think of IPM as noise, hum or undesired sound. If the IPM in a transmitter is down 20dB, THEN YOUR STEREO NOISE FLOOR IS ONLY —20dB. The maximum separation of your stereo signal, anywhere within the audio spectrum, is therefore limited to 20dB!

The causes of IPM are varied, and some can be elusive. Transmitter final amplifier stages that are not completely neutralized contribute greatly to the cause; whereby, if a stage is "sliding around" looking for a different frequency to operate on it can generate considerable IPM. Driver stages can sometimes benefit from neutralization. Low power driver stages are often best neutralized by using Bruene, or bridge, neutralization. "Ageing" low voltage power supply filter capacitors can suffer from reduced capacity causing phase hum or IPM. Drive regulator circuitry and/or general lead dress in some transmitters can cause phase hum and noise. Radiated RF that is picked up on audio cables and fed back into transmitters causes IPM.

If a station does not have an AM stereo monitor or a spectrum analyzer, it is difficult to undertake an IPM reduction project. A narrow band AM stereo receiver can be a helpful aid in evaluating IPM and other nonlinearities occurring in an AM transmitter. Connect one audio channel of this receiver to the "X" input of your scope and the other audio channel to the "Y" input. Left channel out is normally used for vertical scope drive and right channel out is used for horizontal scope drive. Single tone amplitude modulation of the transmitter should produce a diagonal straight line on the scope — any deviation from a straight line represents non-linearity of some sort; distortion, IPM, etc. Shown in the installation section "A" of this manual are drawings depicting several IPM conditions as they would be displayed on a scope, plus additional information and measuring procedures.

Circuit Description AM Stereo Exciter

Audio Input - The audio input signal is connected from the exciter's rear terminals to the Audio Interface circuit card E7. The interface circuit card has both fixed and step pads for adjusting the input levels to a standard internal level that is used for all exciters. The circuit card also has provisions for an input filter to be used, if necessary, in high RF environments.

NOTE: Early units with serial numbers up to 67 have transformers and input networks mounted on the E2 audio circuit card.

Units starting with serial number 365 use the differential amplifier circuit card EIO containing an active input circuitry that replaces the transformers previously used.

After being set by the level control, the audio goes through a balance control and the blend resistors (see E6 circuit description) and then into the E2 audio circuit card.

Audio Equalization and Matrix Card E2 - There are two versions of this card, both have similar circuitry with a few exceptions. The original card, with the transformers mounted on it, does not have provisions for adding a night card, the audio passes through at a lower level and the equalization switches are configured differently.

The current production card has a higher level audio signal which is divided down at the op-amp output to reduce the effects of DC offset into the modulators. It also has a high frequency equalization "Q" control eliminating the need to change capacitor ratios in the equalization circuit to achieve different responses for transmitter variations when using separate day/night transmitters or diverse antenna patterns.

Audio Circuitry Description - The (R and L) inputs are connected into a buffer then via switch selection, either bypasses or is fed through the high frequency equalization.

The high frequency equalization consists of a low pass filter used to adust high frequency phase and amplitude, compensating for effects in the transmitter which can cause information to arrive in a non time coincident manner at the antenna. The output of the high frequency equalization can be switched out or switched either to the "I" matrix or "Q" matrix through the low frequency equalization, binary and bulk delays.

The low frequency equalization is a 2 section high pass circuit used to compensate for low frequency effects in the transmitter such as those generated in the modulation transformers or coupling capacitors. The circuitry will produce lead to lag phase response and under to over damped amplitude response.

Both controls on each channel are adjusted to achieve best low frequency single channel performance. On DC coupled transmitters, the low frequency equalization is not needed and should be turned off for best results. Also note that the low frequency equalization is not used in the closed loop mode.

The matrix combines the left and right channels to form $L + R_Q$, $L - R_Q$ and $L + R_I$. The $L + R_Q$ and $L - R_Q$ are used for the quadrature or phase modulators and the $L + R_I$ is returned to the transmitter's envelope through the L + R amplifier.

To limit single channel excursions the L2 card was supplied with diode limiters on all 3 audio channels (L + RQ, L - RQ, L + RI) in both positive and negative directions. From experience we learned that the positive clippers were never used and diodes D307, D310 and D308 are lifted from the card after testing. The negative through of L - R is not limited therefore diode D309 is deleted. An additional diode drop is added to the L + RI clipper to allow it to limit after closure (100% neg.) and the L + RQ limits before closure to prevent the transmitter from being starved for RF drive which can cause serious problems in some transmitters. The L + RI to the sample transmitter is buffered with its own buffer amplifier from the L + RI for the station transmitter envelope. This prevents interaction which occured with some transmitters when using exciters with sn < 67.

Meter Drive Circuits - The meter drive circuits are also on the E2 card and consist of a simple rectifier and D.C. drive amp. It should be pointed out that the exciter meters do not indicate modulation but only the presence of audio at the exciter input. Also, the meters are not precise anywhere other than the calibration point (75%) and they do not respond to peaks of program content.

The meters on the modulation monitor are the only practical means of determining actual modulation levels.

E6 Night Circuit Card - This card has 2 versions; (1.) full night (2.) half night. The half night contains the single channel limiter and the binary delay with a bulk delay mounted piggyback on the night card. The full night has single channel limiter, binary delay, a duplication of both high and low frequency equalization circuits, the relay for switching the equalization circuits and mounted piggyback is a circuit card containing 2 bulk delays and a second binary delay for totally independent setting between the day and night positions. Also provided on the full night card are, pad resistors and controls for setting equal L and R gains in both the day and night position.

The high and low frequency equalization circuits are identical to the E2 card. Switching is by relay contact which are not used in the half day, however, the circuitry is essentially hard wired to the day position.

The blend/audio processor/single channel limited function compares the L + $R_{\rm I}$ and when a pre-determined ratio (absolute amount) is exceeded the blend is activated which shorts the L to the R channel using a photo cell, limiting the total L - R that can be produced. The L - R signal produces the phase information which has all the sidebands and can produce spectrum problems if not limited. The process defeat switch allows the circuit to be turned off (with switch bat handle to the rear) and on (with bat handle to the front). R655 sets the point at which the limiter takes effect and R662 sets the "on" resistance of the photo cell determining the max L - R level when overdriven. The binary delay provides one microsecond steps of broadband delay between 1 and 15 microseconds, which allows fine adjustment of discrete delays. The bulk delay in 10 microsecond steps allows up to a total of 55 microseconds between both the bulk and binary delays. The broadband delay may be necessary for

transmitters where propagation delay differences in the transmitter, between the envelope and phase paths, can not be corrected by equalization alone.

Circuit Description/Encoder Board, Exciter - The carrier oscillator operates four times above the carrier frequency. This is necessary in order to establish the quadrature relationship in the division. You cannot obtain 90° with anything less than 4 times FC. The temperature co-efficient and values of the circuit are critical. However, stability figures are equal or better than the average transmitter.

The FET crystal oscillator is coupled into a Johnson Divider IC. Two balanced output signals are recovered from the IC, one at 0° phase and another at exactly 90° to the first signal. These outputs are 1/4 of the original crystal frequency.

The output resistor values establish the correct driving voltage for the modulators on a signal or AC basis.

U102 and U103 are driven by what we call the in "phase clock." Notice that U102 function as the carrier reinserter. The modulators are double side-band supressed carrier modulators. The system requires that the carrier be restored and that is the purpose of the third modulator. The input (pin 4) of U102 receives the left plus right signal so think of the left plus right signal as being the in phase and the left minus right as being the 90° quadrature relationship to that phase. The adjustment of these modulators is covered in the alignment procedure. The ratio of R103 to R104 (22K over 220 ohms) limits the amount of adjustment range for the pot.

The DC offset of the output op-amps must fall within this adjustment range or proper AM carrier surpression cannot be achieved.

R123 allows the carrier level to be set so these are entirely different values than the other pots. This sets the DC range to achieve the proper insertion of the carrier. It is biased, to insure that the carrier is reinserted in the proper phase. If you reverse these resistor ratios you would get an out of phase carry insertion and a channel reversal.

In the coupling or transfomer design, there is no selectivity requirement for this circuit. Its only function is to round off the rather sharp clock edges of the signal through the modulator and make them sinusoidul again. If the Q total L - R that can be produced. The L - R signal produces the phase information which has all the sidebands and can produce spectrum problems if not limited. The process defeat switch allows the circuit to be turned off (with switch bat handle to the rear) and on (with bat handle to the front). R655 sets the point at which the limiter takes effect and R662 sets the "on" resistance of the photo cell determining the max L - R level when overdriven. The binary delay provides one microsecond steps of broadband delay between 1 and 15 microseconds, which allows fine adjustment of discrete delays. The bulk delay in 10 microsecond steps allows up to a total of 55 microseconds between both the bulk and binary delays. The broadband delay may be necessary for transmitters where propagation delay differences in the transmitter, between the envelope and phase paths, can not be corrected by equalization alone.

Circuit Description/Encoder Board, Exciter - The carrier oscillator operates four times above the carrier frequency. This is necessary in order to establish the quadrature relationship in the division. You cannot obtain 90° with anything less than 4 times FC. The temperature co-efficient and values of the circuit are critical. However, stability figures are equal or better than the average transmitter.

The FET crystal oscillator is coupled into a Johnson Divider IC. Two balanced output signals are recovered from the IC, one at 0° phase and another at exactly 90° to the first signal. These outputs are 1/4 of the original crystal frequency.

The output resistor values establish the correct driving voltage for the modulators on a signal or AC basis.

U102 and U103 are driven by what we call the in "phase clock." Notice that U102 function as the carrier reinserter. The modulators are double side-band supressed carrier modulators. The system requires that the carrier be restored and that is the purpose of the third modulator. The input (pin 4) of U102 receives the left plus right signal so think of the left plus right signal as being the in phase and the left minus right as being the 90° quadrature relationship to that phase. The adjustment of these modulators is covered in the alignment procedure. The ratio of R103 to R104 (22K over 220 ohms) limits the amount of adjustment range for the pot.

The DC offset of the output op-amps must fall within this adjustment range or proper AM carrier surpression cannot be achieved.

R123 allows the carrier level to be set so these are entirely different values than the other pots. This sets the DC range to achieve the proper insertion of the carrier. It is biased, to insure that the carrier is reinserted in the proper phase. If you reverse these resistor ratios you would get an out of phase carry insertion and a channel reversal.

In the coupling or transfomer design, there is no selectivity requirement for this circuit. Its only function is to round off the rather sharp clock edges of the signal through the modulator and make them sinusoidul again. If the Q becomes too high on this circuit you will see a definite effect on the quam, which is covered in the quam alignment.

There is no requirement for restricting the bandwidth except possibly the elimination of the third harmonic of the carrier frequency. If it gets too tight the quadrature performance will be affected by limiting or cutting off some of the side band information or making them not appear in the proper ratio to reproduce the sideband information accurately.

The darlington differential amplifier is after the transformer. The purpose of this amplifier (it has a gain of less than 2), is its very high front to back rejection or reverse transfer ratio. The limiter switches are at a low impedance and it drives the RF amplifier which also is switching at a low impedance. Without the darlington the signal switching transient would be coupled back and cause the sine wave appearing at the input to be highly distorted or wrinkled due to the switching transient.

If the switching occurs through the zero crossing of the signal, phase error or incidental phase modulation can take place and this is undesirable. The balance control R155 allows the exact symmetry setting of the square wave going into the limiter and the gain control allows the absolute maximum limiting to be obtained before a crushing or distortion, known as break up and described in the alignment procedure, takes place.

<u>Pilot Oscillator</u>. Trimmer C147 has minimal affect because of the high division ratio. The circuit, as presently implemented, requires the MC14040 to be used and not a 4040, one is an edge trigger device the other a level trigger device. You will get a frequency of around 40 Hz if you try to use the 4040 as a

substitute for the other part even through literature says they are pin for pin compatible, that is not the case in this application.

The division ratios input the clock frequency at 25 Hz, it actually runs slightly on the low side. The amplifier rounds off the edges of the square wave. The values are reasonably cirtical and should be 5% parts. The basic thing is to assure that the distortion makes the FCC spec which is 2% of the 25Hz frequency.

A nonpolarized electrolytic C163, is in series with the 4.7K R218. Previously, as you went up and down on the pilot level adjust pot, you actually affected the offset setting and the left minus right circuit.

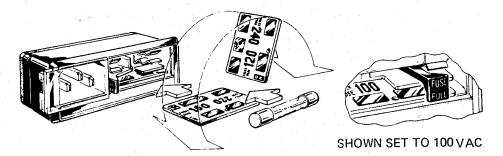
E3 Sample Transmitter/L + R amp - The sample transmitter is used to create a total C-Quam signal for marking closed loop tests. The fully limited quadrature phase modulated signal is injected into a 1596 modulator at pins 8 and 10. The audio is inserted in pin 4 of IC901. The output passes through tuned circuits whose function is to round off the edges of the clock signal. Two transistors (Q901, 902) give enough gain to drive 1V (no modulation) into 50 ohms. The sample transmitter's closure sensitivity is set by changing the DC at pin 1, U901. The AM closure of the sample transmitter should exactly equal the closure at TP110 (Quam point) for proper system operation.

The L + R amp (U902) is a 4 section op-amp used as a bridge amplifier to get the L + R level high enough to drive your transmitters envelope. The IC must have low offset to keep power consumption low.

E5 RF Amplifier - The RF amp drives the transmitter with the quadrature modulated phase signal and replaces the transmitters own oscilator. The output is between 5 and 40 Vpp. A TTL output is also provided.

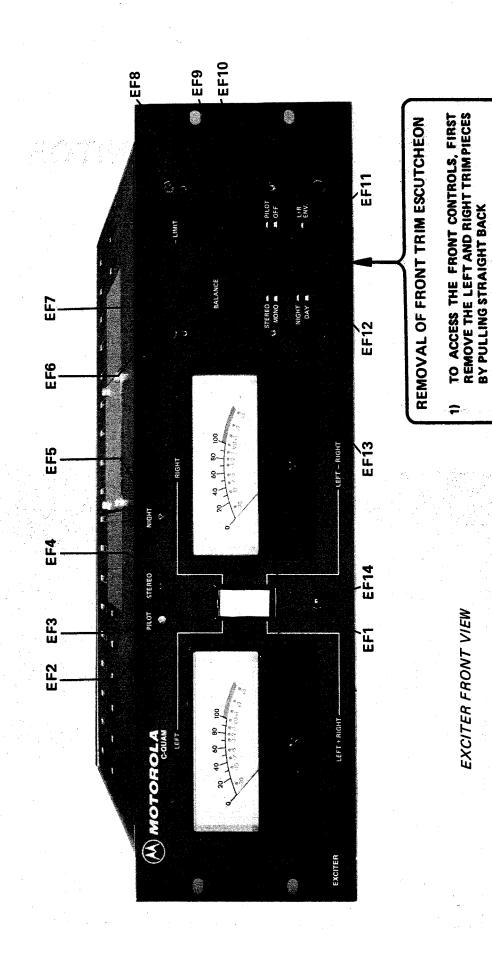
The input from the encoder card and is coupled in through a minicircuits transformer. Two small signal transistors (Q501 and Q502) increase the signal to a level sufficient to drive the VMOS power FETS. In the drive stage, R502 is used to set rise time or gain, and R508 is used to adjust symmetry. The VMOS power FETS have adjustable bias because of the wide range in their turn on spec (.7 to 2.5 VDC). The bias is set with an idle current of 5mA to assure conduction through the temperature range. Diodes D501 and D502 prevent the FET from being damaged when the direction of current is reversed and the field collapses.

The TTL output has had 2 versions; a discrete unit with limited drive capability and an IC version that can drive 50 ohms through 100 feet of coax.


The RF voltage output was adjusted by changing zeners on the original units and is adjusted with a variable voltage regulator on the later units.

Power Supply - The power supply uses 2 full wave supplies to furnish unregulated B+, B-. Solid state regulators (7815, 7805, 7915) provide the regulated outputs. The diodes across the regulators provide protection from back biasing which would destroy the regulator. It should always be remembered that the negative regulator has a greater tendency to oscillate and sometimes external systems problems can agrivate this problem.

EXCITER AND MONITOR


OUTPUTS AND CONTROLS DESCRIPTION AND FUNCTION

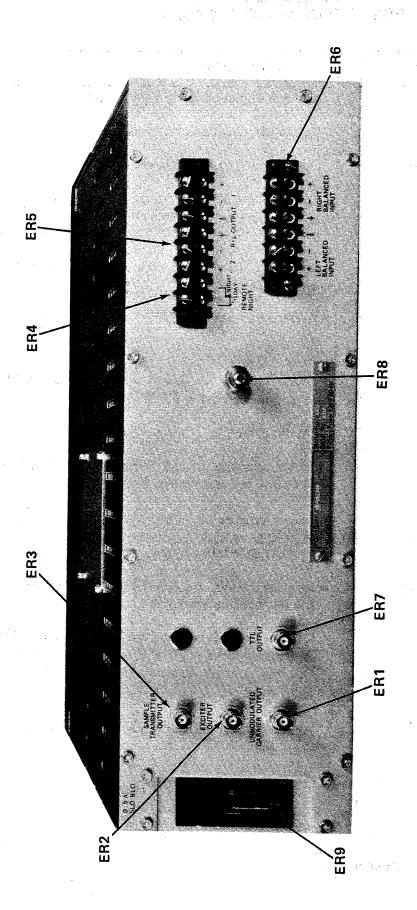
AC Line Voltage Selection

- 1. Slide door to open position and rotate fuse-pull to left.
- 2. Select operating voltage by orienting PC card to desired voltage. Push firmly back into module slot.
- 3. Rotate fuse-pull back into normal position and re-insert fuse into holders.

CAUTION: This is not intended as a field adjustment — exercise care in removing card.

REMOVE THE FOUR (4) SCREWS AND RE-MOVE COVER.

8


EXCITER FRONT VIEW

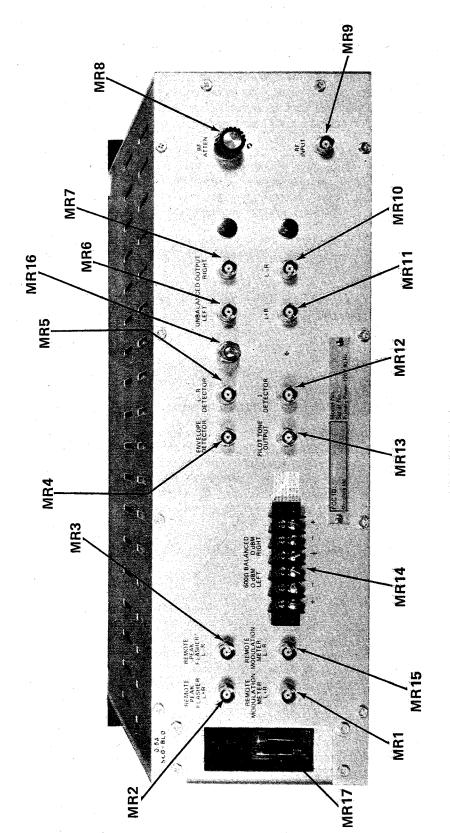
D2

EXCITER FRONT PANEL CONTROLS

555	DECORIPTION	FUNCTION					
REF	DESCRIPTION						
EF1	Meters	Audio level meters for test and set up					
EF2	Pilot Indicator Light	Go/No-go indication of pilot output					
EF3	Stereo Indicator Light	Go/No-go indication of stereo operating mode					
EF4	Function Switch	Top $-(L + R_{\parallel})$ Set up position indicating the relative level of left and right channel audio drive. Note: the meters are not to be used as an indication of modulation.					
		Bottom $-$ (L + R_Q) indicates L + R and L $-$ R audio drive levels					
EF5	Night Indicator Light (Transmitter No. 2)	Go/No-go indication of night operating mode					
EF6	L + R Adj-2	Sets output level of L + R signal fed to modulation input of station transmitter No. 2					
EF7	– Limit	*Audio drive level limiting adjustment					
EF8	L + R Adj-1	Sets output level of L + R signal fed to modulation input of station transmitter No. 1					
EF9	Mono/Stereo Switch	Selects between mono and stereo mode					
EF10	Stereo Pilot Switch	On-Off carrier pilot switch					
EF11	L + R Envelope Switch	Momentary push on type of switch to test if drive to the $L + R_1$ envelope is present					
EF12	Night Day Switch (Transmitter No. 2)	Changes equalization for use with another transmitter or antenna. Works in parallel with remote switch on back. Optional control used only if exciter is equipped with the night equalization feature.					
EF10	Balance	Allows slight amplitude adjustment between left and right inputs.					
EF1	Earphone Jack	For evaluation of decoder output					

^{*}Misadjustment will reduce stereo separation.

EXCITER REAR VIEW


EXCITER REAR PANEL OUTPUTS

REF	DESCRIPTION	. FUNCTION
ER1	Unmodulated Carrier	Sync from encoder to evaluate amount of phase modulation of master carrier frequency.
ER2	Exciter Output	Square wave output to AM transmitter for high power drive (0.5 to 5.0 watts in steps). This signal is the phase modulated substitute for the transmitters oscillator.
ER3	Sample Transmitter Output	Composite output for test of exciter to monitor.
ER4	Remote Night Day Switch	Works in parallel with front panel switch for changing equalization when using another transmitter or antenna. (See exciter front panel controls.)
ER5	R + L Output No. 1 and No. 2 (Envelope Modulation)	Balanced output from L + R amplifier to station transmitter (normal AM modulation input). Adjusted by L + R Adj. front panel controls, +16 dBm maximum.
ER6	Audio Input	Left and right 600 Ω balanced audio input 0 dBm to 15 dBm (determined at time of installation).
ER7	TTL Output	Phase modulated signal which is acceptable for TTL compatible transmitters. Substitutes for normal oscillator of station transmitter.
ER8	Ground	To station ground.
ER9	Power Module	Fuse and AC line voltage selector.

MONITOR FRONT VIEW

MONITOR FRONT PANEL CONTROLS

	MONITOR FRO	
REF	DESCRIPTION	FUNCTION
MF1	Meters	Modulation meters for test and set up.
MF2	Meter Range Switches	Left channel meter range selection switches.
MF3	Meter Range Switches	Right channel meter range selection switches.
MF4	Left Channel Modulation Function Switch	Switches peak flasher (MF5) and left meter between (L + R), (L), (+) or (-) functions.
MF5	(L + R) Flashers and Controls	The yellow (L + R) peak flasher modulation range is set via the front thumb wheel switch. Its function depends on the modulation switch setting (MF4). The monaural red (-100%) envelope and green (+125%) envelope limits have no external settings and are both fixed factory adjustments. Peak amplitude can be accurately determined by increasing the reading on the thumb wheel until the light goes out. The number on the thumb wheel will be the peak modulation.
MF6	Right Channel Modulation Function Switch	Switches peak flasher (MF7) and right meter between (L – R), (R), (+) or (–) functions.
MF7	(L — R) Flashers and Controls	The yellow $(L-R)$ peak flasher modulation range is set via the front thumb wheel switch. Its function depends on the modulation switch setting (MF6). The red $(L-R)$ limit and green (neg limit) have no external setting and are both fixed factory adjustments.
		The $(L-R \text{ limit})$ is equivalent of a 100% phase modulation signal. The (neg limit) indicates that the $L-R$ component is overmodulating the combined modulation envelope. Peak amplitude can be accurately determined by increasing the reading on the thumb wheel until the light goes out. The number on the thumb wheel will be the peak modulation.
MF8	Pilot Tone Indicator	Indicates presence of 25 Hz pilot tone.
MF9	Carrier Level Meter	Establishes a carrier reference level necessary to insure that the circuits driving the modulation meters are affected only by modulation changes. The carrier level meter indicates the average RF signal level input to the monitor decoder circuits. The RF signal input is set to a level (indicated on the meter and determined by the manufacturer) by means of the carrier set control (MF11). As long as the carrier level indication is within the range of the meter (± 20% change of RF level), the modulation circuits will be within their design accuracy.
MF1	0 Switch	Two position calibration meter function switch. In the pilot tone position, the carrier meter must indicate in the black square (pilot) position. This is a fixed factory adjustment which does not have an external setting.
		In the carrier set position, the meter must indicate in the center on (set). The set position can be adjusted with the (carrier set) and rear panel (RF attenuator) controls.
MF	11 Carrier Set Control	Vernier control which operates in conjunction with the 60 dB RF step attentuator on the back panel.
MF	Earphone Jack	To evaluate decoder output.

MONITOR REAR VIEW

MONITOR REAR PANEL OUTPUTS

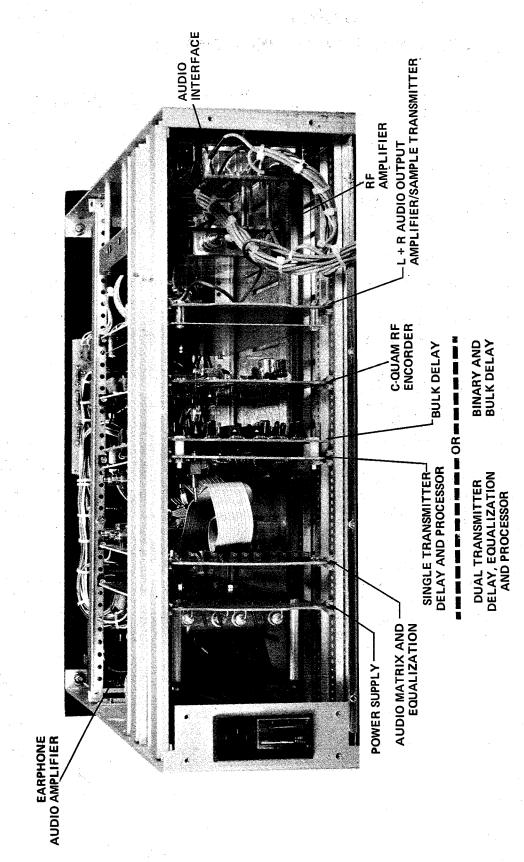
REF	DESCRIPTION	FUNCTION		
MR1	Remote Modulation Meter L + R	DC drive current for remote panel meter operation		
MR2	Remote Peak Flasher L + R	Drive signal for remote operation of flasher		
MR3	Remote Peak Flasher L — R	Drive signal for remote operation of flasher		
MR4	Envelope Detector	Test output to evaluate monitor decoder		
MR5	L — R Detector	L-R (quad) detector test output to evaluate monitor decoder		
MR6	Unbalanced Output Left	For distortion measurements of left audio channel		
MR7	Unbalanced Output Right	For distortion measurements of right audio channel		
MR8	RF Attenuator	A 60 dB step attenuator in 10 dB steps used with the front panel carrier set control to calibrate the monitor		
MR9	RF Input	RF input from transmitter link		
MR10	L – R	L — R output for transmitter testing of stereo signal		
MR11	L+R	L + R (mono) output for transmitter testing of monaural signal		
MR12	In Phase Detector (1 Det)	Test output to evaluate monitor decoder operation.		
MR13	Pilot Tone Output	Counter connection for measurement of pilot frequency		
MR14	600 Ω Balanced	Balanced 600 ohm audio output		
MR15	Remote Modulation Meter L – R	DC drive current for remote panel meter operation		
MR16	Ground	To station ground		
MR17	Power module	Fuse and AC line voltage selector		

MONITOR CIRCUIT CARD LOCATION

MONITOR BASIC CIRCUIT CARD FUNCTIONS

POWER SUPPLY: The power supply operates from a 110V AC source and is protected with a 0.5 amp Slo Blo fuse. It provides (+5), (-15) and (+15) volt DC outputs, and the 28 volts for the modulation meter lamps.

METER: This circuit card contains the audio amplifiers and peak detectors which drive the DC meters. Additionally, it provides the circuitry to drive both right and left yellow peak flashers operating in conjunction with the front panel mounted thumb wheels. It also provides the audio matrix of balanced and unbalanced outputs to the rear cabinet ports. Pilot reject filters are included on this circuit card which eliminate the 25 Hz pilot tone from the meters when making measurements of the left or right channel.


AVC: The AVC circuit card controls the audio signal level allowing the audio signal to be used as an instantaneous indication of the modulation level. This card also contains the carrier level detector and carrier meter drive circuitry, along with the pilot detector and meter drive circuits. With the exception of the two yellow peak flashers, the five remaining flasher drivers are on the AVC panel:

- 1) +125% envelope limit
- -100% envelope
- 3) L R limit (measures recovered audio)
- 4) Neg limit (combined overmodulation indicator)
- 5) Pilot tone indicator

DECODER: The decoder receives 450 KHz from the mixer circuit card, then detects and separates the envelope and $(L - R)_Q$ signals which are sent to the AVC card. For test purposes it provides three detected outputs to rear cabinet ports:

- 1) Envelope detector output
- 2) In-phase detector
- ⇒ 3) L − R quadrature detector

MIXER: The station RF signal is coupled to this panel via a link or antenna. It has a wide band front end which is switch programmed to the station frequency at the factory.

EXCITER II CIRCUIT CARD LOCATION

EXCITER BASIC CIRCUIT CARD FUNCTIONS

Power Supply

The POWER SUPPLY operates from a 117V AC, 60 Hz source and is protected with a 1.5 amp fuse. It provides (+5), (-15), and (+15) volt DC regulated outputs and -24V DC unregulated for the meter lamps and front panel LED's.

Audio-Equalization, Matrix (Day Card)

This unit receives the LEFT and RIGHT audio inputs and passes these signals through the HIGH and LOW FREQUENCY EQUALIZATION sections, compensating for signal path differences in various transmitters. The signals then pass to the audio matrix circuitry that produces the L+R and L-R,I and Q signals. + and - limiting of these signals is provided and finally this unit drives the front panel meters that display the relative audio drive levels.

Audio, Night, Processor (Night Card)

This unit, when the FRONT PANEL SWITCH is in the NIGHT position receives the LEFT, and RIGHT audio inputs and passes these signals through the HIGH and LOW FREQUENCY EQUALIZATION sections, compensating for signal path differences in the NIGHT transmitter. LEFT and RIGHT audio signal DELAY from 0 to 15 microseconds is also provided to compensate for both the DAY and NIGHT transmitter signal path delay differences.

A PROCESSOR circuit prevents excessive levels of single channel modulation which could exceed FCC specifications.

Encoder

The encoder generates the primary frequency of the station. It causes the carrier to be modulated with two "Q" signals $(R + L)_Q$ and $(R - L)_Q$ 90° out of phase. Limiters are provided to eliminate AM modulation. The source for the pilot frequency is located on this card.

L+R Amplifier/Sample Transmitter

The L+R amplifier located on this circuit card generates an output which drives the envelope modulation of the normal station transmission. It also originates a sample C-Quam transmitter signal which simulates the full transmitted stereo for the purpose of checking the monitor receiver.

RF Amplifier

The RF amplifier produces a variable high power phase modulated output and a TTL level output which replaced the transmitter master oscillator.

Bulk Delay Card (Not Shown)

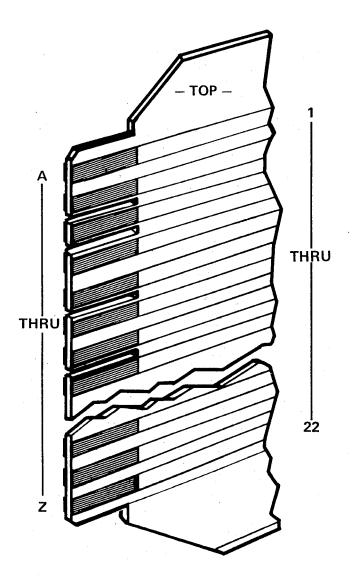
This unit supplements the LEFT and RIGHT audio signal DELAY of the AUDIO, NIGHT, PROCESSOR (NIGHT CARD) by providing four 10 microsecond delay sections for a total of 40 microseconds of addition delay. This unit is only added into the EXCITER when required.

Audio Interface Card

This circuit card mounted on the left side of the EXCITER provides the interconnections for the two 600 ohm attenuator pads. It is adjustable in 1 dB binary steps from 0 to +15 dB and reduces the stations left and right audio inputs (typically +10 dBm level for 100% modulation) to zero dB required by the exciter. An RF filter is provided to both left and right audio lines and can be removed via jumpers if required.

RF AMPLIFIER TYPE 2 CIRCUIT CARD CONNECTOR AND TERMINAL STRIP IDENTIFICATION

MONITOR CIRCUIT CARDS EDGE CONNECTOR PIN IDENTIFICATION


The monitor circuit card has 22 connections on each side of the card. When viewed from the rear, numerical contacts 1 through 22 are always on the right, and alpha contacts A through Z are always on the left as shown above.

NOTE: The card pin outs are keyed to the socket.

- CAUTION -

Be sure to reinsert cards oriented in the same position as they were removed.

EXCITER CIRCUIT CARDS EDGE CONNECTOR PIN IDENTIFICATION

The exciter circuit card has 22 connections on each side of the card. When viewed as shown above, the alphabetical pin outs are always on the left and the numerical are on the right.

- CAUTION -

Be sure to reinsert cards oriented in the same position as they were removed.

EXCITER ALIGNMENT

AIDIO MATRIX AND EQUALIZATION (E2)

NOTE:

- 1. All adjustments are at 1kHz unless specified otherwise.
- All adjustments are without equalization. Set the following switches and controls as follows:
 - A) Equalization switch levers down, six on audio matrix card (E2), six on night card (E6-2).
 - B) Process defeat OFF (lever toward back of card), S607 on night card (E6-2) and S701 on day card (E6-1).

- C) Binary and bulk delays to zero, eight on night cards (E6-2/E9) and four on day card (E6-1/E8).
- D) + Limit and Limit on front panel fully CCW.
- 3. Reset switches as required after alignment.
- Connect limiter diodes if limiting is required. Normally D301 and D302 are factory connected.

	Negative
(L+R)O	D301
$(L-R)_{Q}$	D309
(L+R) _I	D302

TEP	INPUT SETTING	ADJUST	ОИТРИТ	FUNCTION BEING CHECKED/REMARKS	TEST EQUIP.
1	Set Front Panel Night/Day S	witch to Day Position			
2	L+R at Station Specifica- tion for 100% Modulation +10 dBm Typical	Front Panel Balance R783	Day Card TP1 and TP2 for Equal Level (—8 dBm Typical) as referenced to ground	Left and Right Audio Input Balance ± 0.1 dB Alternate method meter across TP1 and TP2 (<100 uV at balance)	DVM, Oscilloscope and or Distortion Analyzer
3 #	L-R at 100% Modulation	R320	Null at TP5	(L+R) _Q Matrix Null	DVM, Oscil loscope and or Distortion Analyzer
4	L+R at 100% Modulation	R322	600 mV PP at TP5	(L+R) _Q Signal Level	DVM, Oscil- loscope and or Distortion Analyzer
4A*	See Below				T a :
5 #	L+R at 100% Modulation	R334	Null at TP6	(L-R) _Q Matrix Null	DVM, Oscil loscope and or Distortion Analyzer
6	L—R at 100% Modulation	R337	600 mV PP at TP6	(L—R) _Q Signal Level	DVM, Osci loscope and or Distortio Analyzer
6A*	See Below				
7	L-R at 180% Modulation	R342	Null at TP7	(L+R) Matrix Null	DVM, Osci loscope and or Distortio Analyzer
8	L+R at 100% Modulation	R344	600 mV PP at TP7	(L+R) Signal Level to Sample Transmitter	DVM Osc loscope an or Distortion Analyzer
8A*	See Below				1
9	L+R at 100% Modulation	R378	6V PP at TP8	(L+R), Signal Level to (L+R), Amplifier	DVM, Osc loscope an or Distorti Analyzer
9A*	See Below				1
10	L+R at 100% Modulation Front Panel Meter Switch L+R/L-R Position	R351 Meter Switch in L+R/ L-R Position	100% Indication on L+R Front Panel Meter	Meter Calibration	
11	L-R at 100% Modulation Front Panel Meter Switch L+R/L-R Position	R359 Meter Switch in L+R/ L-R Position	100% Indication on L—R Front		
12	If your exciter contains bo	th night/day cards proceed to Step	1 of Audio Night Processor Alignme	nt. If not, complete Steps 5 and 6 only.	
Also See Note	- Limit Control 100% Modulation L+R	R782 Front Panel	Check for — Limiter Function as Control is Turned CW	Limit Function, after Test Return to Fully CCW Position. Remove + limit diode D310 if used.	DVM, Os loscope a or Distorti Analyzer

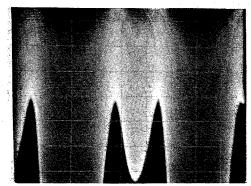
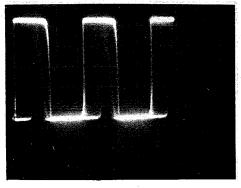


Figure 1.

SINGLE TRANSMITTER DELAY AND PROCESSOR - DAY - CIRCUIT CARD (E6-1)

-:OR -

DUAL TRANSMITTER DELAY EQUALIZATION AND PROCESSOR - NIGHT - CIRCUIT CARD (E6-2)


Prior to this procedure the audio equalization matrix circuit card must be aligned and the switches set as indicated in Note 4 above. NOTE 5:

STEP	INPUT SETTING	ADJUST	OUTPUT	FUNCTION BEING CHECKED/REMARKS	TEST EQUIP.
1	L 100% Modulation	Adjust R619 from Day to Night Back & Forth Until Levels are Identical ± 0.1 dB	Day Card TP5 Approx. 300 mV PP	Sets Identical Level for Left Q Channel on Day and Night Cards	DVM, Oscilloscope and/ or Distortion Analyzer
2	R 100% Modulation	R622 — Same Procedure	Day Card TP5 Approx. 300 mV PP	Sets Identical Level for Right Q Channel on Day and Night Cards	DVM, Oscilloscope and/ or Distortion Analyzer
3	L 100% Modulation	R611 — Same Procedure	Day Card TP7 Approx. 300 mV PP	Sets Identical Level for Left I Channel on Day and Night Cards	DVM, Oscilloscope and/ or Distortion Analyzer
4	R 100% Modulation	R625 — Same Procedure	Day Card TP7 Approx. 300 mV PP	Sets Identical Level for Right I Channel on Day and Night Cards	DVM, Oscil- loscope and/ or Distortion Analyzer
5	Front Panel Meter Switch L	+R/L-R Position. R655 Fully CW.	R662 Fully CCW. S607 to On Pos	ition (Handle Towards Connector End of Card).	
6	L Only Input — Adjust Level for 75% Modulation on Both Meters	R655	CCW Until Right Meter Just Starts to Drop Below 65% Modulation Point	Processor Function	

C-QUAM ENCODER CIRCUIT CARD (E1)

STEP	INPUT SETTING	ADJUST	OUTPUT	FUNCTION BEING CHECKED/REMARKS	TEST EQUIP.
1	None*	C151	Sample Transmitter Port or TP102	Sets Carrier Frequency	Digital Counter
2	Remove AC Power Plug Fro	om Source and Remove IC U102 Fro	m Its Socket		
3	None * *	R135 and R205	Minimum RF at TP110		Oscilloscope
4	Remove AC Power Plug Fro	om Source and Insert IC U102 Back	in Its Socket		
5	L+R at Station Specifica- tion for 100% Modulation	R123	Closure at TP110	Should Track Output at Sample Transmitter J901	Oscilloscope
6	L or R at 10 kHz	T101 and T102	Maximum at TP110 and Symmetry of Depth of Trough (See Figure 1)	Assures Proper Quam Bandwidth (See Alternate Method on Last Page This Section)	Oscilloscope
7	L+R at 100% Modulation	R158	4.0V PP at TP110		Oscilloscope
8	L+R and L—R at 100% Modulation	R129 (L+R) and R200 (L-R)	Sideband Amplitude at TP110, Repeat until L+R Spectrum = L-R Spectrum		
9	L+R at 105% Modulation	R782 — Limit Front Panel	Until Audio Becomes Fuzzy at TP112 or Pin 8 U105 (See Fig 2)	Sync Scope on TP102	Oscilloscope
10	L+R at 105% Modulation	R155 and R205	Center Incidental Phase at TP112 or Pin 8 U105 (See Fig 3)	Sync Scope on TP102, Reduces Incidental Phase to Minimum	Oscilloscope
11	L+R at 125% Modulation	R782 — Limit Front Panel	Until Phase Noise is Minimum at TP112 or Pin 8 U105	Sync Scope on TP102	Oscilloscope
12	L+R at 125% Modulation		Check for 95% or Greater Modu- lation in Trough at TP110		Oscilloscope

Front panel stereo/mono switch in mono position.

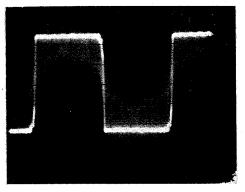


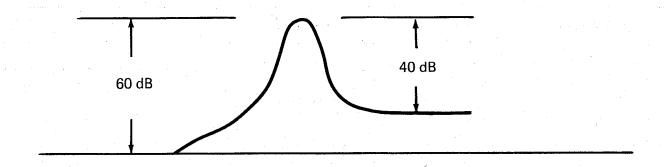
Figure 3.

L+R AUDIO OUTPUT AMPLIFIER/SAMPLE TRANSMITTER CIRCUIT CARD (E3)

STEP	INPUT SETTING	ADJUST	ОИТРИТ	FUNCTION BEING CHECKED/REMARKS	TEST EQUIP.
1	L+R Station Specification for 100% Modulation	base	Closure at J901 (No Load) Should Track with TP110		Oscilloscope
2	L+R Station Specification for 100% Modulation at 40 kHz	T901, T902 and C913	Maximum Output and Symetry of Sidebands at J901 (No Load)		Spectrum Analyzer
3	L+R Station Specification for 100% Modulation	R938	4.0V PP at J901		
4	L+R Station Specification for 100% Modulation Day Transmitter	L+R Adj-1 (Front Panel)	Per Stations Specified Output	Test of tht L+R Amplifier	DVM
5	L+R Station Specification for 100% Modulation Night Transmitter	L+R Adj-2 (Front Panel)	at R+L Rear Terminal Strip with 600 Ω Load	The state of the s	

RF AMPLIFIER - TYPE 1 CIRCUIT CARD (E5)

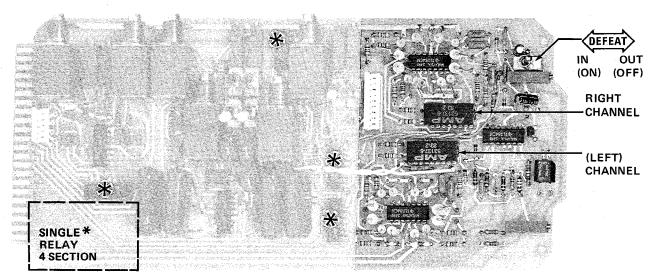
STEP	INPUT SETTING	ADJUST	OUTPUT	FUNCTION BEING CHECKED/REMARKS	TEST EQUIP.
1	Set R518 and R250 Fully C	W Before AC is Applied			7. 1
2	Remove Input Drive, (2) BN	IC Connectors From RF Amplifier			
3	, None	R518 and R520 Fully CCW	Add 10mA Total Current on +15V Input Lead (5mA With Each Control)	Insures Drive Over Ambient Temperature Range	Clip-On DC Milliammeter
4	Replace (2) BNC Connector	rs on RF Amplifier			
5	Normal Encoder Drive	R508	Symetry at J503 with a 50 Ω Load	Slight Correction Only	Oscilloscope
6	Normal Encoder Drive	R502	Maximum Rise Time With Minimum Ringing at J503	Will Vary with Zener Voltage. Note Zener Value Selected per Station Requirement	Oscilloscope
7	Normal Encoder Drive	R502 and R508	Best Symetry and Minimum Ringing at TTL Output	Sets TTL Output (If Required)	Oscilloscope


RF AMPLIFIER - TYPE 2 CIRCUIT CARD (E5)

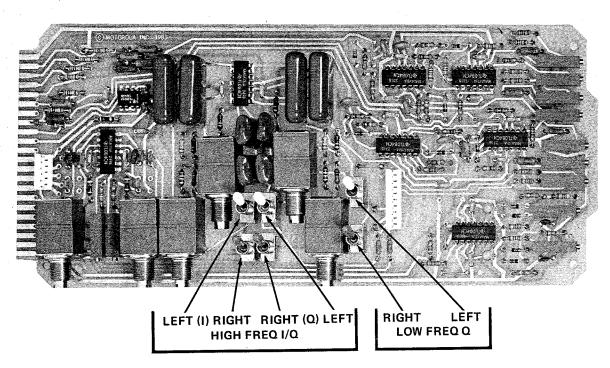
STEP	INPUT SETTING	ADJUST	ОИТРИТ	FUNCTION BEHIND CHECKED/REMARKS	TEST EQUIP.
1	Skip to Step 4 unless Q503 o ohm loads.	or Q504 have been replaced. Before	e AC is applied, remove shield, set R5	13 and R514 fully CCW, terminate RF and TTL out	puts with 50
2	Remove two BNC input con	nectors J501 and J502.			·
3	None	R513 and R514	Add 10mA total current on +15V red lead (5mA with each control)	Adjust quiesent current (5mA) through each output fet Q503, Q504 to insure proper drive over ambient temperature range. Replace shield and BNC connectors	Clip-on DC millimmeter in +15V lead
4	Set R504 drive gain fully CO	CW and R507 drive symmetry to m	id position		
5	Normal drive	R504	TP1 and TP2 adjust CW until saw tooth waveform rounds off at peak. Turn CCW one turn.	Sets drive level to fet output amplifier and TTL line drivers	Oscilloscope
6	Normal drive	R507	Exciter or TTL output (J503/ J505). Adjust for symmetry of square wave	Sets exciter and TTL output symmetry	Oscilloscope
7	Normal drive	R518	Set R518 RF level to desired output from 5 to 40 vPP.	Matches transmitter input drive level to exciter output	Oscilloscope

C-QUAM ENCODER CIRCUIT CARD (E1)

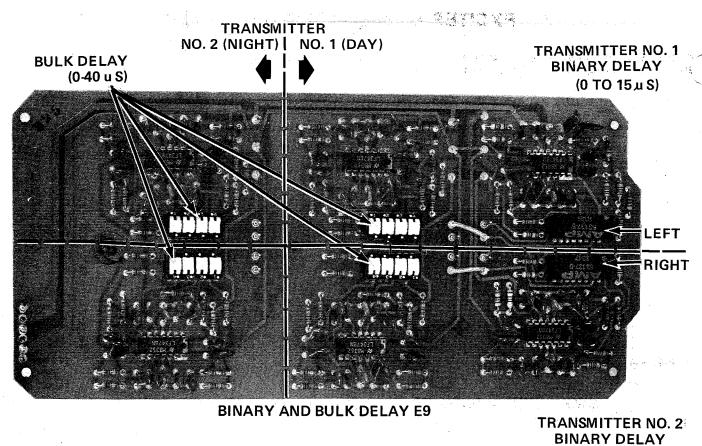
QUAM bandwidth Step 6 alternate method of adjustment. If a spectrum analyzer equipped with a tracking generator is available proceed as follows.

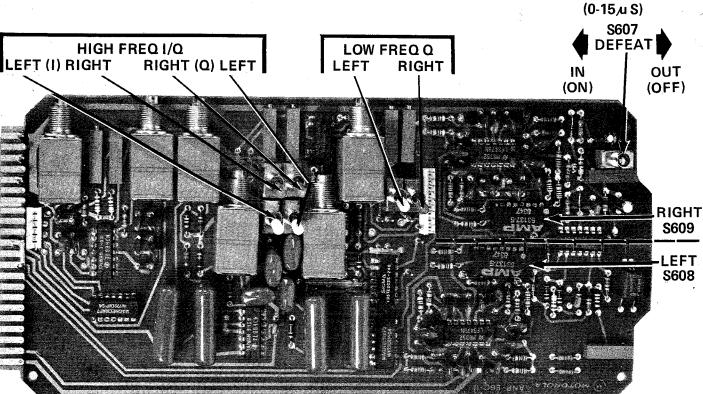

- 1. Connect tracking generator signal to TP108
- 2. Disconnect capacitor C105.
- 3. Input probe to TP110.
- 4. Set spectrum analyzer to 30 kHz resolution, 200 kHz/CM bandwidth, 10 dB/CM sensitivity. Output should be on frequency with only one major response.

- Switch to 1kHz resolution, 10 kHz/CM bandwidth, 2 dB/CM sensitivity. Align T101 and T102 for symmetry of waveform at 30 kHz.
- 6. Momentarily connect C105 and observe RF amplitude at TP110. Adjust R158 for proper amplitude, repeating steps 2 through 6 until no further shifts occur.
- 7. On sample transmitter card (E3), observe signal at J901 repeating Steps 4 through 6 using T901, T902 for alignment and R938 for amplitude.
- 8. Permanently connect C105 and resume encoder alignment at Step 8.


EXCITER II ALIGNMENT SWITCH LOCATION

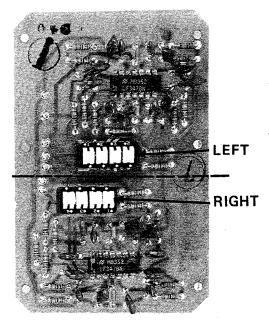
SHADED AREA COMPONENTS NOT ON E6-1 SINGLE TRANSMITTER CARD

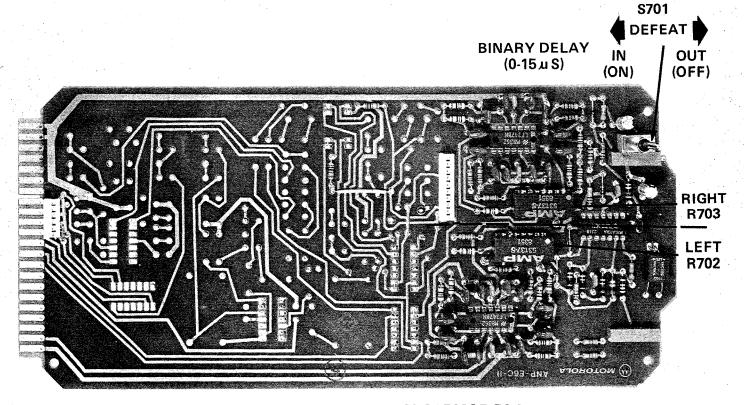

^{*}FOUR SECTION SINGLE RELAY REPLACES THE FOUR (4) INDIVIDUAL RELAYS ON SOME VERSIONS.


SINGLE TRANSMITTER DELAY AND PROCESSOR CIRCUIT CARD E6-1

ALL SWITCHES SHOWN IN (OUT) POSITION

AUDIO MATRIX AND EQUALIZATION CIRCUIT CARD E2




DUAL TRANSMITTER DELAY, EQUALIZATION AND PROCESSOR E6-2

EXCITER II DUAL TRANSMITTER AUDIO PROCESSOR CIRCUIT CARDS (NIGHT)

BULK DELAY (0-40 µS)

BULK DELAY E8

SINGLE TRANSMITTER DELAY AND PROCESSOR E6 1

EXCITER II SINGLE TRANSMITTER AUDIO PROCESSOR CIRCUIT CARDS (DAY)

MONITOR ALIGNMENT

M27 CIRCUIT CARD

A. SETTING THE LOCAL OSCILLATOR FREQUENCY

Setting the Frequency Select Switches:

Determine the DIP switch settings by consulting Table I. Corresponding to each station frequency, the table lists an 8 bit binary number identifying the on or off condition of each of the 8 switches contained in the 16 pin DIP pack. To set the switches, remove and hold the card such that the large synthesizer IC is between you and the switch block. The switches now lie in the same order as the binary number, the first bit in the number (left end) corresponding to the left most switch in the block. A "1" bit means that the switch should be "on". The switch should be depressed away from you (away from the large IC). A "0" bit means that the switch should be "off". The switch should be depressed toward you.

If there is any doubt as to whether the setting is correct, attach a frequency counter as described under "Setting the reference Oscillator".

Setting the Reference Oscillator:

The accuracy of the reference oscillator is determined indirectly by reading the local oscillator frequency instead. The oscillator is then adjusted by the trimcap C710 to bring the local oscillator frequency to the correct value. The range of adjustment is only a few hertz.

Attach the counter probe to either R707 or R708. Use the end away from the U701 mixer IC. These points correspond to the output pins 14 and 15 of U704.

1. L701, L703 IF Coils

L701 and L703 can be tuned from the peak amplitude waveform at either terminal of C728. The M41 card should be plugged in for this adjustment. As an alternate, the waveform out of the L+R jack on the rear panel can be used. Again, tune for the maximum waveform.

L705 RF Coil

For those monitors having the network consisting of L705, C732, and R739, tune for maximum signal output at C728, or at the L+R rear panel jack as was described in the paragraph above.

M41 CIRCUIT CARD

Refer to Schematic SC-M41. Alignment of the decoder circuits should be done with the monitor driven by the sample transmitter in the exciter, rather than from the tap on the transmitter. All absolutely necessary alignments may be done by using the program material being broadcast, although the preferred method for complete alignment requires single tone modulation. Both methods will be covered. An oscilloscope should be used for the observations, and the scope should be in the DC mode. Voltages should be read using the scope. For waveform observations of low amplitude, the scope can be switched to AC mode.

A. ALIGNMENT USING PROGRAM MATERIAL

The paragraphs that follow are headed with the component to be adjusted.

1. L501, L502; IF Coils

L501 and L502 can be tuned by peaking the L+R channel output at the rear panel jack.

2. R501; Corrector Line Limit Trimpot

TP518 (at R501) should be between -5.5V and -6V at the start of alignment. Adjust R501.

3. R503; Envelope Detector Balance Trimpot, 1st Adjustment

Disconnect the RF input to the monitor. The voltage at TP504 (on corrector line) should be -2V. This voltage should be adjustable by R503.

4. Rear Panel Step Attenuator, Front Panel RF Attenuator Pot

The two RF attenuators should be adjusted such that the amplitude due to the carrier is nominally 100mv peak to peak at TP501(at RF input). Adjust during a null in the program.

5. R503; Envelope Detector Balance Trimpot, Final Adjustment

The pilot tone should be off. Switch the exciter to mono modulation mode. Adjust R503 such as to null the audio appearing at TP504 (on corrector line). Avoid periods of heavy modulation, and try to adjust to where only a straight line appears on the scope.

6. R504; Quadrature Detector Balance, First Adjustment

Switch the exciter to mono modulation, pilot off. Adjust R504 to null the audio at the L-R rear panel jack. Try to make the adjustment avoiding intervals of high level modulation.

7. R501; Corrector Line Limit Trimpot, Final Adjustment

Switch the exciter to mono modulation. The modulation level should be large enough to fire the -100% mod. indicator fairly regularly. Adjust R501 slowly CW. The corrector line voltage will be seen to move negative (TP518). The L-R output will show large spikes, with an amplitude exceeding 100% modulation. Adjustment even further may cause a large amplitude RF signal to appear on the L-R output. The scope intensity may have to be turned up to see the spikes because they are random and of short duration.

Now adjust R501 CCW. The TP518 voltage will move in a positive direction. A point of adjustment will be reached such that the amplitude of the spikes will decrease to an amplitude corresponding to 50% modulation or less. Leave the R501 adjustment at this point.

These L-R spikes are somewhat more evident if a XY type display is available on the scope. Rig the scope to display L+R vertical and L-R horizontal. The display will look like an inverted "T". The spikes are the horizontal bar on the "T". With an X/Y display, R501 may be adjusted even with the exciter in stereo mode.

8. The following adjustments should not be attempted using program material for modulation.

R505; Divider ckt phase trimpot

R674: Corrector loop gain

L503, L504, L505; 2nd. harmonic filters on the det.

L506; 4th haromic filter on the corrector line

R502, R571; Pilot filter, PLL control line

These should be adjusted only using the single tone modulation method, otherwise they should be left as set at the factory.

B. M41 ADUSTMENT WITH TONE MODULATION

Connect the monitor to the sample transmitter output of the exciter. Provide for a 1 KHz tone input to the left and right audio inputs of the exciter. Provide appropriate switching such that L only, R only, L+R and L-R modulation can be produced on the sample transmitter output.

1. L501, L502; IF Coils

L501 and L502 can be tuned by peaking the L+R channel output at the rear panel jack. Modulate with L+R.

2. R501; Corrector Line Limit Trimpot, First Adjustment

TP518 should be between -5.5V and -6V at the start of alignment. Adjust R501.

- 3. R503; Envelope Detector Balance Trimpot, First Adjustment

 Disconnect RF input to monitor. The voltage at TP504 should be -2V.
 This voltage should be adjustable by R503.
- 4. Rear Panel Step Attenuator, Front Panel RF Attenuator Pot

 Two RF attenuators should be adjusted such that the amplitude due to the carrier is nominally 100mV peak to peak at TP501 (at RF input).
- 5. R503; Envelope Detector Balance, Final Adjustment

 Set the 1KHz tone modulation at 75% L+R. Adjust R503 such that the corrector line (TP504) is a straight line on the scope display. (Null out any "points" on the waveform.)
- 6. R504; Quadrature Detector Balance
 With the modulation at 75% L+R, observe the L-R waveform at the rear panel jack. Null out any audio on the waveform such that only a straight line is displayed. The pilot should be switched off at the exciter.
- 7. R671; Corrector Loop Gain

The pilot tone should be off. Set the tone 1KHz modulation to 100% L-R. Observe the L-R output from the rear panel output jack, and test for distortion with a distortion analyzer. As the control R671 is rotated clockwise, the distortion should decrease until a point is reached such that further rotation of the control produces no reduction in distortion. The distortion that results will be somewhere in the area of 0.1% to 0.3%. R504 might need adjustment to get least distortion at this time. Then back the control such that the least distortion read is degraded by 0.05%. (This adjustment was to set the corrector loop gain.)

An alternate method to adjust R671 is as follows. Set the 1 Khz tone modulation to 100% L-R as before. Observe the waveform at TP504 (corrector line). Adjust R671 CW until the waveform is at a minimum amplitude, and the pot is at the limit of its range. Adjustment R671 CCW until the waveform amplitude increases 25% from the minimum.

8. L503 (Env. Det.); L504 (I.Det.); L505 (Q. Det.) 2nd Harmonic Trap

Set the modulation to 75% left only. Tune each coil to null the 2nd

harmonic at the corresponding test point (TP507, TP508, and TP509). Other harmonics will be present, so some judgement has to be used in determining when the 2nd harmonic has been nulled in the waveform.

9. L506; 4th Harmonic Trap

Set modulation to 100% L-R. Tune L506 so as to null the IF 4th harmonic visible in the negative tips of the waveform. Other harmonics are present so some judgement will have to be used in determining when the 4th harmonic is nulled.

10. R505; Equalizing Single Channel Distortion

The pilot tone should be off. Set the modulation to 75% L only. Measure the distortion in the L-R waveform. Change the modulation to 75% R only. Again measure the distortion. Repeat these two readings several times while adjusting R505 to equalize the two readings. This control is a phase adjustment on the "divider circuit" consisting of U501 and U502.

11. R501; Corrector Line Limit

The pilot tone is off. Set the 1KHz modulation to 85% Left only. Adjust R501 to where the negative tips of the waveform just begin to limit.

12. R502, R571; Pilot Filter, PLL Control Line

Turn on pilot tone at exciter. There should be no other modulation on. Adjust R502 for maximum 25Hz signal at TP513 (U504 pin 1). Adjust R571 for the least 25Hz signal at TP514.

M10 CIRCUIT CARD, Preliminary Alignment

A. MODULATION LIMIT INDICATORS AND METER CIRCUITS

The M10 circuit card contains the circuits which operate the +125%, the -100%, the L-R Limit, and the Negative limit indicator lights. Calibration of these circuits is done with a 1 kHz tone source applied to both the "Envelope Detector" and the "Quadrature Detector" jacks on the rear panel. The M27 and the M41 circuit cards must be removed from their sockets during this adjustment. Calibration of the left and right meters also is accomplished during this adjustment. The steps in the calibration are listed below. Each begins with the control to be adjusted. All voltages should be read with an oscilloscope operating in DC mode.

Begin by removing the M27 circuit card and the M41 circuit card from their sockets.

1. R135; Zero AVC L+R Channel Output

Apply a short to the Envelope Detector jack on the rear panel. Open switch S101. Adjust R135 for O volts at U104, pin 8.

2. R134; Zero AVC L-R Channel Output

Appy a short to the Quadrature Detector jack on the rear panel. Open switch S101. Adjust R134 for O volts at U106, pin 1.

3. R132; Zero AVC L-R Channel Input

Apply a short to the Quadrature Det. rear panel jack. Close switch S101. Adjust R132 for O volts at U106, pin 1.

4. R133; Offset AVC L+R Channel Input for Test

Apply a short to the Envelope Detector jack on the rear panel. Close switch S101. S101 will remain closed for the remaining adjustments. Pin 1 is the top most lead of S101. Adjust R133 clockwise, such that S101, pin 1 goes to a -4V. Allow a moment for the voltage to settle.

Explanation: The M41 card inputs a DC voltage of approximately -1 volt through the edge connector, contact "P" of the M10 card. This voltage is derived from the envelope detector on the M41 card, and its magnitude is a measure of the carrier level being input to the monitor. This voltage is used by U102 (where it is input to pin 8) to derive the feedback voltage seen at S101, pin 1. In the absence of this voltage, (M41 unplugged) a positive voltage may be applied to U102, pin 4, to simulate the presence of the envelope detector voltage. R133 is adjusted to provide this voltage. The proper amount of voltage to apply is determined by observing the feedback voltage and setting it to -4 volts.

At a later point in the monitor alignment, this voltage will be readjusted to its normal operating value.

All adjustments on the M10 circuit card, that require an audio input to the envelope detector jack or to the L-R detector jack, will require R133 to be set as described in this step.

Note that the U104 pin 8 output is now at approximately +5 volts. With carrier only applied to the monitor, U104 pin 8 output would be at this voltage.

5. R252; Zero Offset Amplifier

Adjust R252 such that the voltage at U105 pin 8 is OV. The waveform at U104 pin 8 contains a DC component of 5 volts. U105 translates the voltage down to 0 volts. This is necessary for the correct functioning of the peak modulation indicator lights.

6. R817; Calibrate Left Meter on L+R

Apply a 1 kHz tone to the Envelope Detector jack on the rear panel. Observe the waveform at U104 pin 8 using a scope in DC mode. Adjust

the tone amplitude such that the negative loops of the waveform just touch the O volt line. The waveform out of U104 pin 8 now matches the waveform that would exist if a 100% envelope modulated signal were input to the monitor. The appropriate push button switches should be set so as to be reading +(L+R). Adjust R817 so that the left meter reads 100%. The left meter is now correctly calibrated. R817 is accessible through an opening in the bottom panel of the monitor.

7. R247; Equalizing AVC L+R and L-R Gains

Apply a 1 kHz tone to the envelope detector jack and the L-R detector jack simultaneously. Set the tone amplitude so that the left meter reads 100%. Adjust R247 such that the amplitude of the waveform at U106 pin 1 matches the amplitude of the waveform at U104 pin 8. There will be no DC component in the waveform at pin 1 of U106.

8. R818; Calibrate Right Meter on L-R

Apply the 1 kHz tone to the envelope detector jack and the L-R detector jack simultaneously. Adjust the tone amplitude such that the left meter reads 100%. The push buttons should be set such that the right meter is reading +(L-R). Adjust R818 such that the right meter reads 100%. R818 is accessible through an opening in the bottom panel of the monitor.

9. -100% Modulation Indicator

Apply the 1 kHz tone to the envelope detector jack such that the left meter reads 100% L+R. If the light is not on, do step 6 again. Any waveform at U104 pin 8 that reaches or extends below 0 volts will cause the -100% modulation indicator to turn on.

10. R255; +125% Modulation Indicator

Apply the 1 kHz tone to the envelope detector jack such that the left meter reads 125% L+R. Adjust R255 such that the +125% modulation indicator light just turns on.

11. R256; L-R Limit Indicator

Apply a 1 kHz tone to the L-R detector jack such that the right meter reads 100% L-R. Adjust R256 such that the L-R limit indicator light just turns on.

12. R258; Negative Limit Indicator

Apply a 1 kHz tone to the envelope detector jack and the L-R detector jack. Adjust the tone amplitude until both the left and right meters read 90%. Adjust R258 until the negative limit indicator light just turns on.

13. R242; Calibrate Left Meter on L

Apply a 1 kHz tone to the envelope detector jack such that the left meter reads 100% L+R. Switch the left meter to read +Left. Adjust R242 to read 50% +Left.

14. R243; Calibrate Right Meter on R

Apply a 1 kHz tone to the envelope detector jack such that the left meter reads 100% L+R. Switch the right meter to read +Right. Adjust R243 to read 50% +Right.

15. R187: Left Meter Channel Separation

Apply a 1 kHz tone to the envelope detector jack and to the L-R detector jack simultaneously. Adjust the amplitude of the tone so that the left meter reads 100% L+R. Adjust R187 to null the reading on the left meter, set to read +Left.

16. R193; Right Meter Channel Separation

Apply a 1 kHz tone to the envelope detector input so as to read 50% +Right on the right meter. Apply the same input to the L-R detector jack instead. The right meter should still read 50% +Right. Adjust R193 so that the two readings will match.

17. R230; Pilot Detector Oscillator Frequency

Connect a counter to the pilot signal jack on the back panel. Adjust R230 so that the frequency is 25 hz + or - 0.1 hz. No audio should be input during this adjustment.

18. R225, R259, R220; Pilot Level and Detector Sensitivity

R259 should be adjusted to center. This trimpot is provided as a convenience for fine adjustment of the pilot level meter.

Input a 25 hz tone at the L-R detector jack. Adjust the amplitude to 5% (-26 dB) L-R. Set the front panel toggle switch to read pilot tone level (the handle toward the pilot tone indicator light). Adjust R220 CCW (counter clockwise). This sets the sensitivity of the pilot tone detector maximum. Adjust R225 such that the meter needle is directly centered over the wide mark at the left side of the meter. At this time the pilot indicator light will be on.

Adjust R220 CW such that the pilot indicator light flashes on or turns off. Turn R220 CCW until the light is on steady. Turn two additional turns CCW.

19. M10 Final Adjustment

The adjustment of the M11 card requires the adjustments made in step 4 to remain as set. Therefore the final adjustments to the M10 circuit card are left to a later section. At that time the setting of R133 will be set to its final operating point.

M11 CIRCUIT CARD

Before adjustment of the M11 panel is begun, steps 4 thru 8 of M10 Circuit Card Alignment must be completed and the settings made in those steps must remain for this alignment. The M41 and M27 circuit cards must be out of their sockets. $S101 \ pin 1 \ must be \ at -4 \ volts \ as set in step 4 (M10 section).$

1. R402; Left Peak Indicator Light

Apply a 1 kHz tone to the envelope detector jack. Adjust the amplitude such that the left meter reads 100% L+R. Set the left thumbwheel to read 100. Adjust R402 such that the left peak modulation indicator light just turns on.

2. R413; Right Peak Indicator Light

Apply a 1 kHz tone to the L-R detector jack. Adjust the amplitude such that the right meter reads 100% L-R. Set the right thumb wheel to 100. Adjust R413 such that the right peak modulation indicator light just turns on.

3. R325; Left Pilot Rejection

Apply a 1 kHz tone to the L-R detector jack and adjust the amplitude to where the left meter reads 50% L. Change the tone to 25 Hz. Adjust R325 to null the left meter reading. The resulting reading should be less than 5% L.

4. R363; Right Pilot Rejection

Apply a 1 kHz tone to the L-R detector jack. Set the amplitude such that the right meter reads 50% R. Change the tone to 25 Hz. Adjust R363 to null the right meter reading. The resulting meter reading should be less than 5% R.

5. R385; Left Channel Output (Back Panel)

Apply a 1 kHz tone to the envelope detector jack. Adjust the amplitude to where the left meter reads 100% L+R. Adjust R385 to where the amplitude of the signal from the left output jack is 1/2 that from the L+R output jack.

6. R387; Right Channel Output (Back Panel)

Apply a 1 kHz tone to the envelope detector jack. Adjust the amplitude to where the left meter reads 100% L+R. Adjust R387 to where the signal amplitude from the right output jack is 1/2 that from the L+R jack.

7. R380; Left Channel Separation on Back Panel Output Jack

Apply a 1 kHz tone simultaneously to the envelope detector and the L-R detector jack. Adjust the amplitude to where the left meter reads 100% L+R. Adjust R380 to null the signal from the left jack.

8. R383; Right Channel Separation on Back Panel Output Jack

Apply a 1 kHz tone to the envelope detector jack. Adjust the amplitude to where the left meter reads 100% L+R. Note the amplitude of the signal from the right channel jack. Move the tone input to the L-R detector jack. The output from the right channel jack should remain the same. If the amplitudes are not the same, adjust R383 and repeat. The amplitudes should be compared with as much precision as possible.

9. R480; Remote Left Meter Calibration

This adjustment is done where an M30 remote meter panel or other remote meter installation is present. The station engineer will have to devise a means of communicating the remote meter reading to the person doing the monitor alignment.

Apply a 1 kHz tone to the envelope detector jack. Adjust the amplitude to read 100% L+R on the left meter. Adjust R480 such that the left remote meter reads 100%.

10. R481; Right Remote Meter Calibration

Apply a 1 kHz tone to the L-R detector jack. Adjust the amplitude to read 100% L-R on the right meter. Adjust R481 such that the right remote meter reads 100%.

The alignment of the M11 circuit card is now complete. The setting of R133 (M10) may now be returned to normal operating setting per the section entitled "M10 Circuit Card, Final Adjustment."

M10 CIRCUIT CARD, FINAL ADJUSTMENT

These adjustments are made using the sample transmitter on the exciter. Most of the following can be made using the program audio that would be input to the exciter when broadcasting. The remaining adjustments that require tone or single channel inputs could be omitted. The worst that could result would be a slight inaccuracy in calibration of channel separation or the gain ratio between the L+R vs the L-R channel. The adjustment of R133 is absolutely necessary.

Remove any audio connections to the back panel. Connect the RF input to the sample transmitter on the exciter. Replace the M27 and M41 circuit cards in their sockets.

The following adjustments should be performed after any adjustments have been made on the M41 circuit card.

1. R133; L+R Channel Calibration with M41 and M10 Reconnection

Observe the signal from the envelope detector jack on the back panel. Adjust the step attenuators and the front panel pot such that the average DC value of the waveform appears to be -1 volt. (Start with the front panel pot CW and turn the step attenuator CW until the DC appears to be more negative than -1 volt. Then cut back the signal amplitude with the front panel pot to -1 volt.)

Note: The step, on which the step attenuator is now set, will be the setting for all the adjustments that follow.

Turn the step attenuator CCW as far as the switch allows. The waveform at the envelope detector jack will have collapsed to almost a straight line. Observe the waveform at U104 pin 8 on the M10 circuit card. This waveform will also have collapsed to a small amplitude. Adjust R133 such that the DC level of the waveform is 0 volts.

Return the step attenuator to the original setting that was noted above. The L+R channel is now in calibration.

2. R246; AVC Loop Range

The purpose of this adjustment is to set the AVC feedback voltage to its designed operating point. This is accomplished by setting the level of the envelope detector waveform that is input to the AVC stage. Adjust R246 so that S101 pin 1 (top switch lead) is at -4 volts.

3. R245; Carrier Level UNMOD RF WTO M41 AT 100 MU p-p

When this control is properly adjusted, the proper level of IF input to the M41 circuit board causes the carrier (edge) meter to read at the center mark.

Move the front panel toggle switch such that the handle is toward the RF attenuator pot knob. This connects the edge meter to read IF signal level. Adjust R245 such that the carrier meter reads center.

4. R260; Carrier Meter Sensitivity

Check the voltage at S101 pin 1. Adjust the front panel RF attenuator pot CCW so that the voltage at S101 pin 1 moves negative 20%. Adjust R260 to align the carrier meter needle with the 20% mark at the left end of the meter.

5. R220; Pilot Detector Sensitivity

Adjust R220 CW such that the pilot indicator flashes or turns off. Turn back CCW so that the light turns on steady. Turn two additional turns.

6. R1002; Left Channel Earphone Output. R1003; Right Channel Earphone Output

The volume level output from the earphone jack for left or right channels are individually adjustable by the trimpots R1002 and R1003 accessible through holes in the right panel.

The following adjustment requires a single tone, or a single channel input to the exciter which are not compatible with being in the broadcast mode. These adjustments may be omitted or delayed until a better time.

1. R247; L-R vs L+R Channel Gain

Modulate the sample transmitter with a 1 kHz tone Left channel only such that the left meter reads 60% L+R. Adjust R247 so that the right meter reads 60% L-R.

2. R187; Left Channel Separation, Left Meter

Input audio to the exciter right channel only, such that 50% modulation is indicated on monitor right meter reading +R. Adjust R187 such that the left meter reading on +L is a null.

3. R193; Right Channel Separation, Right Meter

Input audio to the exciter left channel only, such that 50% modulation is indicated on the monitor left meter reading +L. Adjust R193 such that the right meter reading on +R is a null.

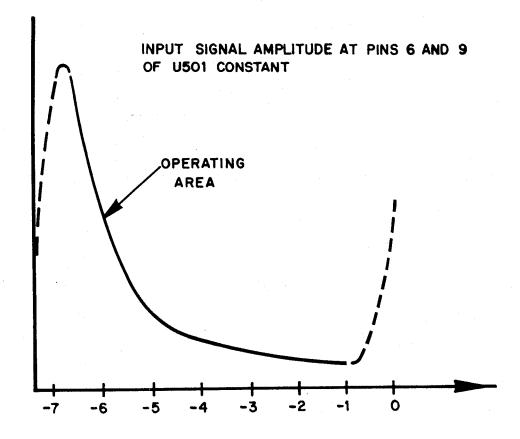
4. R383; Right Channel Separation, Back Panel Output (M11 Circuit Card)

Input audio to the exciter left channel only, such that 50% modulation is indicated on the monitor left meter reading +L. Adjust R383 such that the back panel right channel output is a null.

5. R380; Left Channel Separation, Back Panel Output (M11 Circuit Card)

Input audio to the exciter right channel only, such that 50% modulation is indicated on the monitor right meter reading +R. Adjust R380 such that the back panel left channel output is a null.

These should be the final steps in the monitor alignment.


TABLE 1: M27

STATION	L.O.	vco	SET	SWI TCH 87654321
530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 710 720 730 740 750 760 770 780 880 810 820 830 840 850 860 870 880 890 910 920 930 940 950 960 970 980 970 980 970 980 970 980 970 980 970 980 970 970 970 970 970 970 970 97	980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1190 1110 1120 1130 1140 1150 1140 1150 1160 1170 1180 1290 1210 1220 1230 1240 1250 1260 1270 1280 1390 1300 1310 1320 1330 1340 1350 1360 1370 1380 1360 1370 1380 1490 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1400 1410 1410 1420 1430 1440 1450 1460 1470 1480 1490 1400 1410 1410 1420 1430 1440 1450 1460 1470 1480 1490 1400 1410 1410 1410 1420 1430 1440 1450 1460 1470 1480 1490 1400 1410 1420 1430 1440 1450 1450 1450 1460 1470 1480 1490 1500 1510 1510 1510 1520	3920 3960 4040 4080 4120 4240 4280 4320 4360 4440 4520 4560 4640 4640 4720 4760 4840 4960 5080 5120 5240 5240 5280 5320 5360 5480 5560 5640 5720 5760 5840 5720 5760 5840 5720 5760 5760 5760 5760 5760 5760 5760 576	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 160 170 170 170 170 170 170 170 17	01100010 01100011 01100101 01100101 01100111 01101000 01101010 01101011 0110100 011011

TABLE 1: M27 (Cont.)

				SWITCH
STATION	L.O.	VCO	SET	87654321
1080	1530	6120	153	10011001
1090	1540	6160	154	10011010 10011011
1100	1550 1560	6200 6240	155 156	10011011
1110 1120	1570	6280	157	10011101
1130	1580	6320	158	10011110
1140	1590	6360	159	10011111
1150	1600	6400	160	10100000
1160	1610	6440 6480	161 162	10100001 10100010
1170 1180	1620 1630	6520	163	10100010
1190	1640	6560	164	10100100
1200	1650	6600	165	10100101
1210	1660	6640	166 167	10100110 10100111
1220 1230	1670 1680	6680 6720	168	10100111
1230	1690	6760	169	10101001
1250	1700	6800	170	10101010
1260	1710	6840	171	10101011
1270	1720 1730	6880 6920	172 173	10101100 10101101
1280 1290	1730 1740	6960	174	10101110
1300	1750	7000	175	10101111
1310	1760	7040	176	10110000
1320	1770	7080	177	10110001
1330	1780	7120	178 179	10110010 10110011
1340 1350	1790 1800	7160 7200	180	10110111
1360	1810	7240 7240	181	10110101
1370	1820	7280	182	10110110
1380	1830	7320	183	10110111 10111000
1390 1400	1840 1850	7360 7400	184 185	10111000
1410	1860	7440	186	10111010
1420	1870	7480	187	10111011
1430	1880	7520	188	10111100
1440	1890	7560 7600	189 190	10111101 10111110
1450 1460	1900 1910	7600 7640	190	10111111
1470	1920	7680	192	11000000
1480	1930	7720	193	11000001
1490	1940	7760	194	11000010
1500	1950	7800	195 196	11000011 11000100
1510	1960 1970	7840 7880	190	11000100
1520 1530	1980	7920	198	11000110
1540	1990	7960	199	11000111
1550	2000	8000	200	11001000 11001001
1560	2010 2020	8040 8080	201 202	11001001
1570 1580	2030	8120	203	11001011
1590	2040	8160	204	11001100
1600	2050	8200	205	11001101 11001110
1610	2060 2070	8240 8280	206 207	11001110
1620	2070	02.00	LUI	11001111

VOLTAGE AT PINS 2 AND 4 OF U501

FIGURE 1.

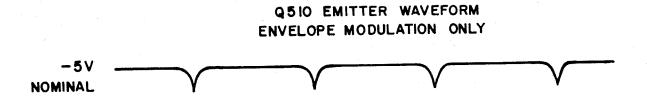


FIGURE 2.

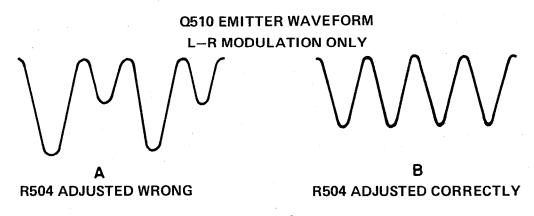


FIGURE 3.

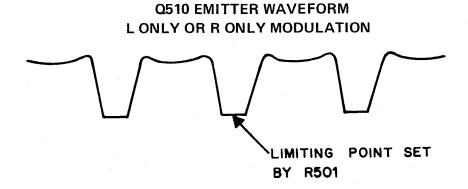


FIGURE 4.

MONITOR TROUBLE-SHOOTING

As a tool for analyzing the performance of your AM stereo system, the monitor is very useful. The problem arises when the indications on the monitor are abnormal. The question is whether the system or the monitor has failed. the following will outline some steps to try and isolate the problem.

First, what is a correct and incorrect meter reading. Normal stereo programs should produce much higher deflection on the L+R meter than on the L-R meter. When programming reverts to mono the L-R activity should drop considerably. If one channel is disconnected into the exciter, the L+R and L-R should respond equally. When switched to right and left, the disconnected channel should indicate a null of 20dB or greater, and single channel peaks should not exceed 75%. If peaks of 70% are reached, use the exciter processor to limit L-R magnitudes.

Failure of the catastrophic type.

- 1. No meter movement or pilot light Check AC input, then check fuse and power supply.
- 2. Meters pegged to left or right This indicates that one of the DC supplies has failed. Unplug cards starting with the mixer. If any card alleviates the situation, a short on that cards B+ or B- buss should be suspected. The investigation is then between that card and the power supply. If the power supply voltages are okay with meter card (M-11) removed the problem is on the M11, if not, the power supply has failed.
- 3. Meters do not move, but pilot lights function and meters are not pegged.

Check that the \pm -, L+R/L or L-R/R modulation switches and meter range switch are selected. Insure that the carrier level meter is at the set mark for an RF input at back of monitor.

If an RF voltage is present, remove all the cards, one at a time, and clean the edge connectors and re-seat them. Caution, this should be done with the power off. If the problem has not been corrected, it will be necessary to use an oscilloscope to trace for a loss of signal.

Place the mixer (M17 or M27) on a card extender and check for RF at the input of L702 or pins 1,4 of U701. If no signal, check input attenuator and front panel carrier set control.

Check for signal through the mixer for unity or a slight gain. If no output, trouble-shoot the mixer.

Insure that RF is at the decoder card by checking secondary of L501. Then check L+R and L-R at output filters. Both output signals must be present or the problem is on the decoder card.

The output of the decoder is connected to both the A.V.C. card (M10) and the meter card M11. Check the rear L+R output to see if the signal is there. Check to see that the L+R is at the M10 card, pin 8 and at U102. Check the L-R at the rear panel port and at the input of M10, pin 8 and at U103. Note that the L+R and L-R signals at the output of the M10 card is in both polarities. If the signal disappears in the card, see M10 AVC card trouble shooting. The route

of the M10 output signal is confusing, see the block diagram for the most clear understanding. The path is through the selector network, the M11 card for the meter amp, then to the meter.

Total failures tend to be easier to fix than partial failures or suspected poor performance. If you are experiencing difficulty call us for technical assistance, we may suggest that the unit be returned for repair and calibration.

4. The meter indicates something is wrong but broadcast signal appears to be normal. In order to determine broadcast signal quality a mono and stereo signal must be available. Remember that the monitor may be telling the real story and a problem could have developed in either the transmitter or the exciter. If the meter movements are unusual, connect the monitor to the sample transmitter output of the exciter with the equilization switched off. If the behavior is radically different, it is a sign that the problem is in the transmitter.

If you have a modified Pioneer SX-6 or a Sony SRF 100 you can go to the transmitters oscillator while forcing the receiver to stereo. A switch is provided inside the SX-6 to force the receiver into stereo mode. If you still hear a lot of phase information while the transmitter is mono it is an indication that something in the transmitter is causing IPM. This must be corrected prior to evaluating the actual monitor operation.

If no Phase information is evident on the receiver, but the monitor indicates high phase activities, the problem may well be in the monitor. One thing to remember, with no signal the monitor is likely to indicate almost anything. There are several closed loop circuits trying to lock onto a signal that isn't there.

The oscilloscope can be used to measure phase modulation. Sync the scope at the "Unmodulated Output" on the exciter rear panel or TP102 of the encoder card. Depending upon the exciter, one of these points may provide a better source for sync.

The phase signal should not exceed 1/3 of the alteration for 100% modulation. If the exciter modulation is low, but the monitor modulation looks high, use the same sync and look at the transmitter output. If the excurtions are worse, the transmitter may be a fault.

Another technique is to use the scope in an X-Y mode tracing the signal through the system. Adjust the system for equal sensitivities and trace from Telco or STL to processor, exciter, monitor and another receiver source. Somewhere in the chain you should encounter an indication of trouble. Try L, R, L+R, and L-R for indications of trouble.

5. Follow the alignment procedure until an indication of trouble is encountered. This may identify the problem and ultimately lead to a repair, however, the time consumed could be prohibitive. Returning the unit for repair and calibration might be the best course of action and actually cost less. We, of course, are willing to help via the telephone, but first write down as many facts as you can gather. In any event, we would suggest that you call before returning the equipment.

TROUBLE-SHOOTING YOUR MOTOROLA C-QUAM STEREO EXCITER

With over 250 units in the field we have received enough calls from engineers to feel the need to write a piece on trouble shooting. This might aleviate some of the fears, of some engineers, of the complexity of AM Stereo. It's not really as tough as you might think. Let's get to some basic questions to try to localize the nature of the problem;

- 1. Does the transmitter have carrier drive?
- 2. Does it sound bad in stereo?
- 3. Does it sound bad in mono?

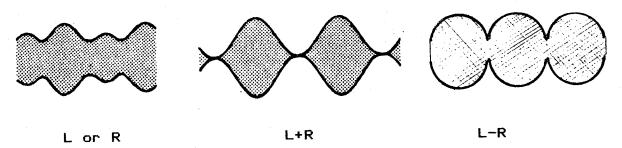
Let's start with audio problems. Recall that the exciter has 2 outputs (RF and Envelope) and 1 input (Right & Left channels). It is desireable to have a patch or some other method of determining whether it is getting the proper inputs and delivering the proper outputs. You should have the ability to measure with a voltmeter, observe with a scope and listen to it on a speaker. In that this paper is on trouble shooting the exciter, it should be obvious if you're not putting good audio in you can not expect good audio out. Many of the modern AM Stereo audio processors have L+R output in addition to L and R channels and it's a good idea to wire that into the patch bay and set it for the proper level to drive the audio input of your transmitter. This allows you to circumvent the audio path in the exciter with one patch cord. Recall, also, that L+R and L-R audio information is sent down the RF chain in your transmitter to produce stereo. Let's address the 2 SOUND questions one at a time.

A. Sounds good in mono but bad in stereo.

Two things should be immediately tried;

1. Switch the exciter to mono (Either move the mono/stereo switch sharply or switch the transmitter off before pushing the switch.)

If the sound gets better when in mono the problem is in the exciter audio or in the encoder card and the RF amplifier is probably OK. This assumes that the inputs are OK. If the output still sounds bad go to step 2 as the RF amplifier would be most suspect.


Let's try to solve problem 1 first. The front panel meters will provide the first clues as they are at the half way point in process. These L and R meters are at the end of the seperate channel processing and before matrixing. The L+R and L-R meters are matrixing but before modulation. REMEMBER! none of the meters on the exciter actually indicate that modulation has taken place. These meters do indicate that audio is present for modulation. Look first at the L and R meters. Are both present in the correct amount? Remember that the single channel meters are double faced. they read twice the actual modulation. This was done to try to make people nervous about exceeding 75% single channel modulation. should also know that the meters are neither extremely accurate or properly damped - they are intended to indicate drive. If the are there but one of the single channels is missing obviously something is wrong in the signal path. The easiest thing to do is first note position of all the equalization switches and then "excercise" each switch vigorously to see if there is any indication,

on the meter, that this could be the fault. If it is, bridge the faulty contacts with a wire until you can get a replacement switch. It's not always that easy so let's trace the signal from the inputs.

NOTE: There are 2 basic exciter models in the field: 1. Old (herein referred to as "O"). EITHER a single plastic cover with 2 switches and 2 adjust pots OR 2 plastic covers with a silver tag that says "R adj --- L adj". These have serial numbers less than 0068. 2. New (herein referred to as "N"). A square hole in the top cover plate with both a day and night or a 1/2 night card connected with a 6 wire and a 10 wire ribbon cable. These have serial numbers greater than 0067. The prime difference is in the fact that the equalization feature is duplicated and switched by relay to provide the day/night feature.

To provide easy partitioning first get the signal to the input of op-amp "0" U301, pins 7 & 8 or "N" TP1 & TP2. The high frequency equalization is the next block "O" U301, pins 1 & 14 or "N" U307, 7 & 8. The low frequency equalization is the next block "O" U302, pins 1 & 7 or "N" TP4 & TP5. The bulk and binary delays also come before the single channel metering points and these switches should also be noted for their setting and then "excercised". The unit is DC coupled past the input transformers and you should keep your scope in DC to look for excessive offset (greater than .03VDC) which can cause problems to the modulator. If you get signal all the way through bulk and binary delay it's time to switch to the L+R, L-R meter mode (Rocker down) on the exciter. With single channel input the L+R and L-R meters should read the same and with L+R the L-R should be at a null and visa versa. If these indications are not correct you must signal trace through the matrix. Note that the meters read only the "Q" or phase channel reading unless you press the "L+R Env" switch. This analysis is done on basis that mono was OK.

If all meter indications are proper to this point then the problem is probably in the encoder. TP110 "N" or pin 13 of U105 "O" $\,$ is a $\,$ key test point on the encoder.

The waveforms are shown above and the CW amplitude should be 2 Volts peak-to-peak (Use only a 10:1 probe). The exciter must be in the stereo mode to present these waveforms. The L+R and L-R waveforms being incorrect would be an indication that the respective modulator has failed. While many stations could probably perform the encoder alignment listed in your manual, you are advised to read the procedure several times and if it's not totally clear please give us a call. A second point of caution is to not mess with alignment unless you are TOTALLY convinced it is necessary....IF IT AINT BROKE, DON'T FIX IT!

2. Switching the exciter to mono doesn't help.

The first thing to do is switch to your transmitters own oscillator and confirm that it clears the problem (Remember, you will

be in mono when you're on your transmitters oscillator.) If you can not easily switch to your transmitters own oscillator you should make a strong effort to get a switch installed to facilitate this.

One thing you should do is put a "Tee" connector on either the "Exciter" output and/or "TTL" output, whichever your transmitter(s) use(s), and also put a masking tape drawing on the back of your exciter showing the voltage and waveform of the exciter working into your transmitter under NORMAL operating conditions. This may not be an ideal square wave due to reactance in the cable and in the load. The important thing is that the transition area (where the waveform crosses the base line) be free of distortion as most of the stages in the RF chain are not running class A. The "Tee" will allow you to go in and look at the RF output without having to shut the transmitter off. If you are concerned about station personnel you should put a "Caution! Do Not Remove While Transmitter Is Operating" tag on the Tee to prevent those embarassing dead air gaps.

If the transmitter does not sound better in stereo when you switch to your own oscillator then you have something in your transmitter that is causing very high levels of Incidental Phase Modulation (IPM). This MUST be fixed before returning to stereo operation. NOTE: If you are listening on the Motorola converted Pioneer SX6 receiver, the SX6 MUST be placed into the "forced AM Stereo" mode. The Motorola Monitor always "listens" in the stereo mode.

If going to the transmitters own oscillator DOES clear the problem then the only remaining link is the exciter RF amplifier and the limiter or encoder. Check at the input of the RF amplifier to see that you have BOTH phases of RF drive and that ALL "B" voltages are present (+15, -15, +5). The alignment proceedure should reveal which stage of the RF amplifier has failed. You can order a replacement unit or fix it yourself. As always, we will be happy to help you through the investigation.

B. Sounds bad in mono.

The first thing to do is bridge around the exciter audio as mentioned at the start of this article.

If the transmitter still sounds bad then the next thing to do is go to your transmitters own oscillator. If it is still bad, then, the problem is in your transmitter. NOTE: The stereo exciters RF amplifier is about the only element that can cause BOTH mono and stereo problems.

If circumventing the exciter audio helps then you must find the problem in the exciter. The problem of bad mono can be anywhere from the input audio terminals on. Switch the exciter to mono (SHARPLY) to make sure it's not the phase information that is messing up the mono. This would be a rare instance and an attempt at aligning the encoder PER THE LISTED INSTRUCTIONS should yield an indication of the problem area. If the Mono/Stereo switch does not help then the "I" (Envelope) path must be checked to get to the problem. Check from the audio input terminals to the op-amps ("O" U301, pins 7 & 8, "N" TP1 & TP2) then to the "I" matrix ("O" U303, pin 8, "N" U301, pin 1) then through the front panel pot to the L+R amplifier on the sample transmitter, and then to the output terminals. ONCE AGAIN, THE CAUTION ABOUT WATCHING D.C. OFFSETS HOLDS TRUE. The clippers are another item that should be checked.

C. The transmitter does not have carrier.

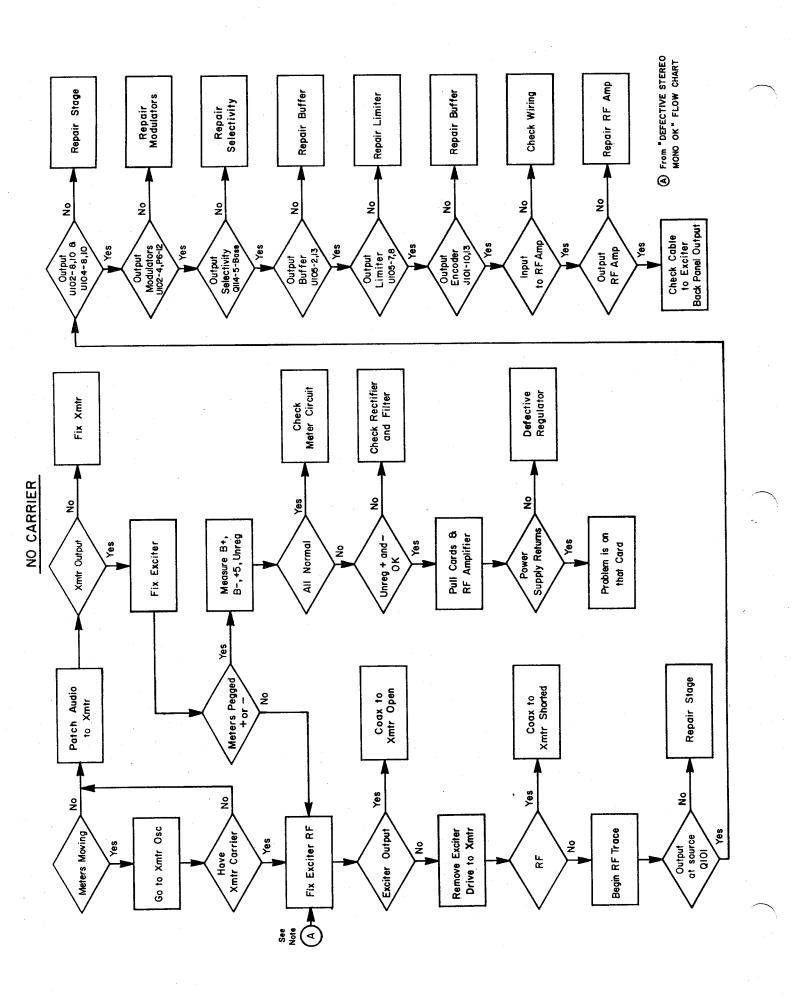
The first thing to determine is whether the stereo exciter has failed catastrophically. You can get your first indication without removing the covers; IF the audio meters are "pinned", either to the right or left, either the +15 or -15VDC power supply is gone --- due to a failure or a short. If this is true: circumvent the exciter audio, return to your transmitters own oscillator and you will be back in business in mono (unless your transmitter has failed).

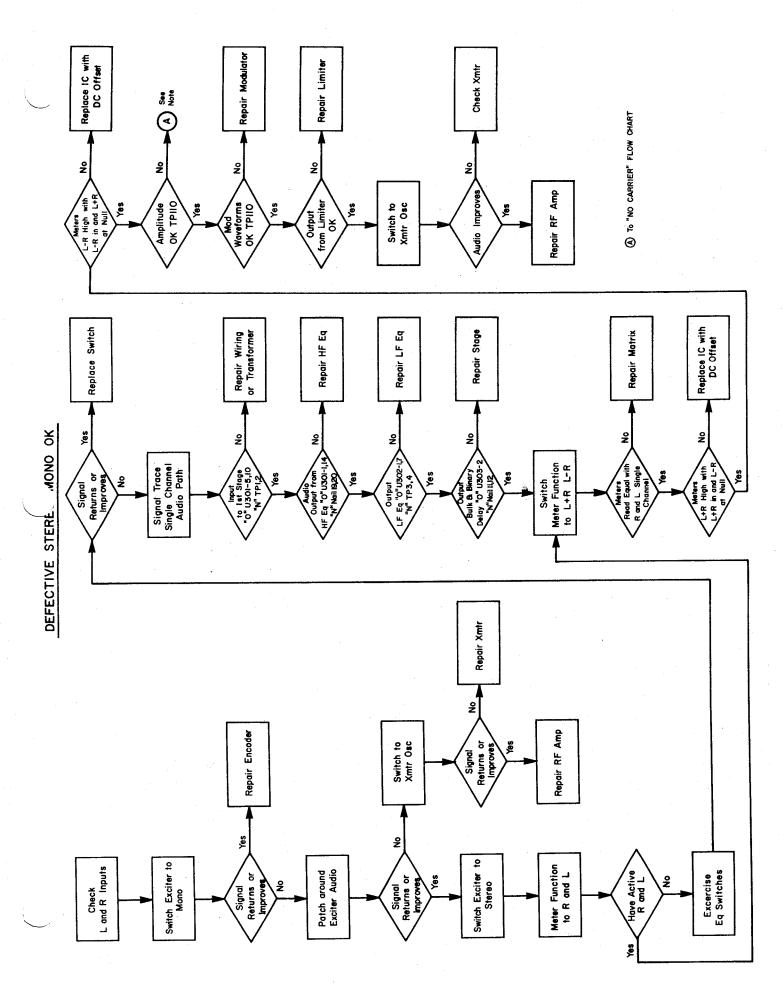
Let's start first with power supply failure. After you have returned to the air in mono, pull the exciter from the rack, remove the top lid and the back. The power supply card is the one with the black heat sink closest to the power transformer. The +15 is pin #3 and has a number of red wires on the pin. The -15 is pin #5 number of white wires on it. The +5 is pin 7 and has orange wires. your trusty volt meter to determine which has failed. Leave the meter connected to the "failed" pin while completing the next step. (NOTE: The +5 is derived from the +15 so if the +15 has failed you will have +5.) First check that the UN-REGULATED plus and minus voltages are present at the respective regulator inputs, then, with the meter back on the pin with no voltage, begin to un-plug all the cards (PC Boards) in the exciter while observing the failed power supply voltage. removal of a card brings the power supply voltage up then on that card is the problem. Last, remove the power supply leads from the RF amplifier, taking care not to short them to anything. If voltage wont come up with all loads removed, then the power supply regulator is suspect.

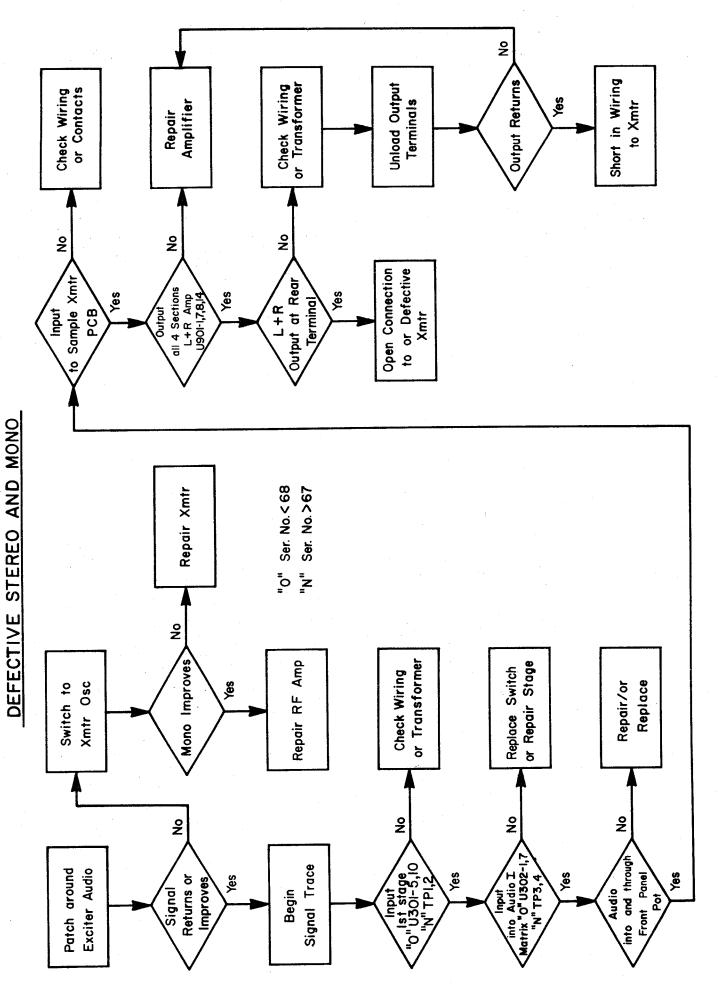
If the power supply is OK then the RF generators path has failed somewhere. Put a scope on the RF output and observe the output. If waveform is OK then the link to your transmitter may have Remove the transmitter connection - if the RF comes then up, path must be shorted. NOTE: With no load the RF amplifier waveform exhibits a lot of ringing. If there are no indications of problems the output then you'll have to start tracing the RF from the The RF starts from the 4 times carrier frequency oscillator, Q101 the encoder card E1. Look at the source of Q101 for a 4 times frequency signal. (It's not a very good looking sine wave.) From go to the output of the divider. Look at pins 8 and 10 (inputs) on modulators. Check the outputs, pins 6 and 12 of all modulators. outputs are summed through 100 ohm resistors then go to the input the buffer (Base of Q114, Q115). From the buffer the signal goes to the input of the limiter (pins 2 & 13 of U105), then to the output of limiter (pins 7 & 8 of U105). The output of the limiters goes buffer transistors to pins 10 & 13 of the output connector. NOTE: These outputs are symetrical and each pair of signals should be roughly identical in waveform and amplitude. The RF amplifier is next chain and has been discussed previously.

The only other failure is pilot failure. First, confirm that both the Motorola Monitor and a C-Quam decoder equipped receiver indicate that the pilot has failed. If the pilot has failed, the first thing to do is "excercise" the pilot switch on the exciter. If this fails then it's time to start signal tracing. Here's the path; Drain of Q113 Encoder to output of divider (25 Hertz square wave) pin #15 of U106, Output of the low pass filter, pin #1 of U107. Input of modulator, pin #1 of U104. NOTE: The pilot switch has extra contacts so you can pick another set or wire for redundancy.

I have tried to shed some light on a trouble shooting proceedure but I would like to emphasize the fact that we are always glad to answer your questions and help you as best we can.

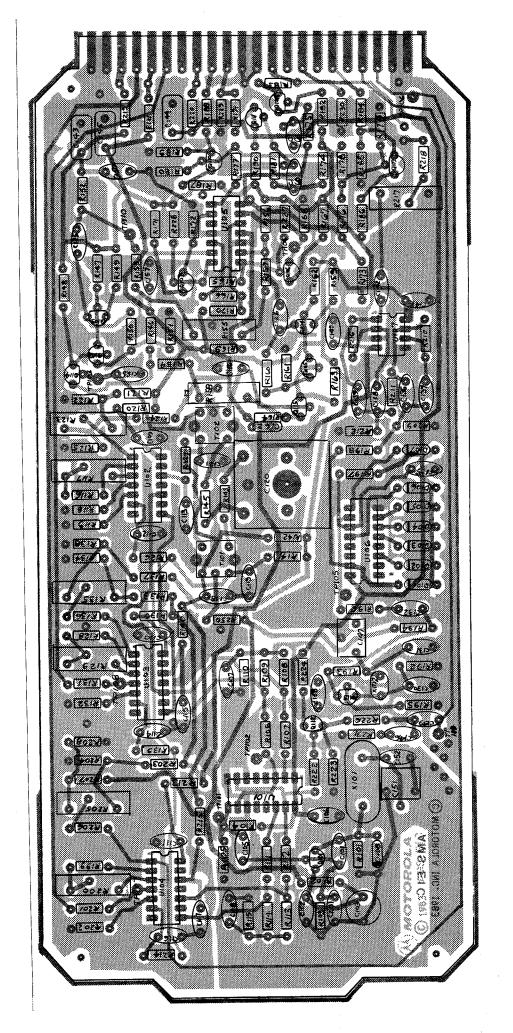

SUMMARY

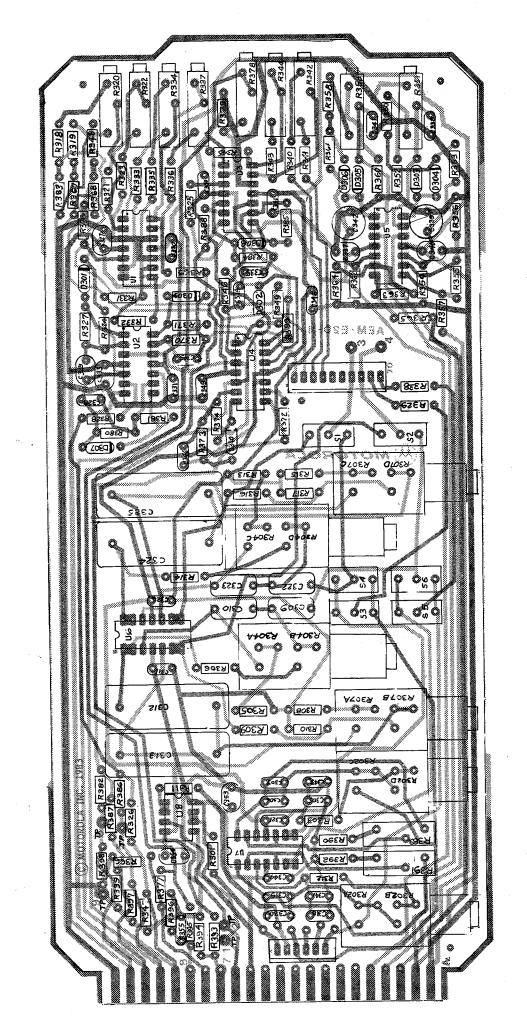

Things you should do BEFORE you have trouble.


- 1. Put a Tee on the RF output of the stereo exciter and record the waveform on the back of the exciter.
- 2. Wire your patch bay so you can monitor inputs and outputs and easily patch around the exciter.
- 3. Wire your transmitter so you can switch to your transmitters oscillator easily. Use a relay for remote operations. NOTE: Some input powers are high and contact ratings on the switch or relay should be observed.
- 4. Post a written proceedure for transmitter operation independent of the stereo exciter.
- 5. Make 3 copies of this troubling shooting proceedure. Put a copy in the manual, a copy at the transmitter location and one in an envelope tied to the exciter.

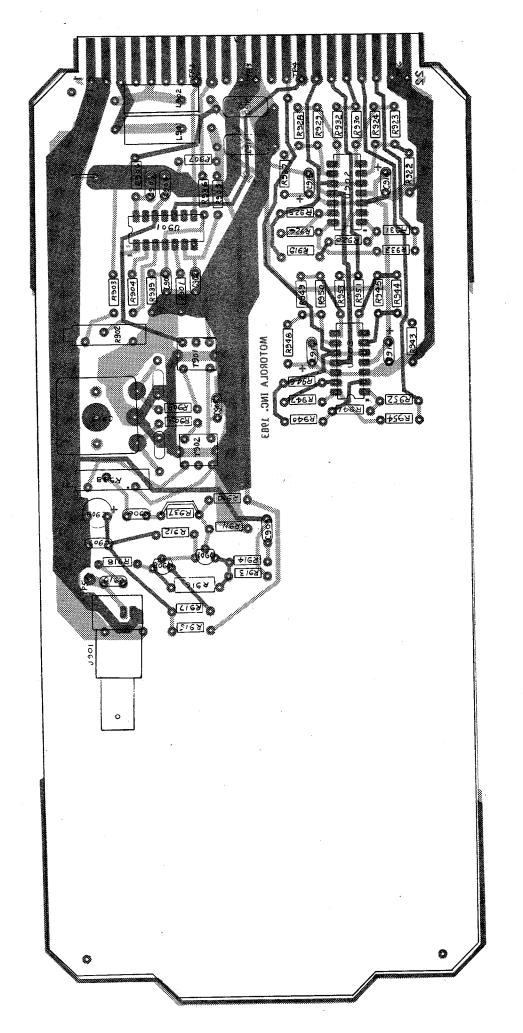
Once a year exciter maintenance.

- 1. Carefully remove all cards (PC boards), noting positions, and clean the edge connectors.
- 2. "Excercise" all switches. Note their position before starting!
- 3. Inspect all cards for obvious problems.

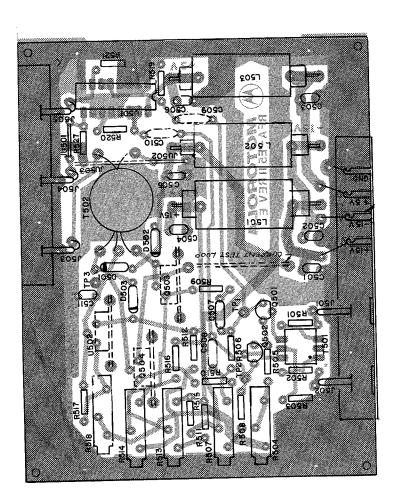


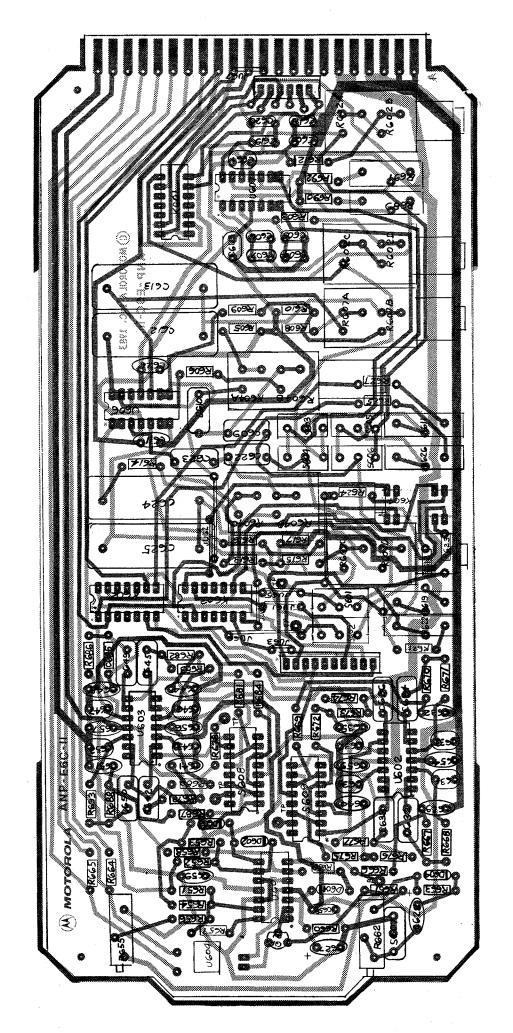

SCHEMATICS

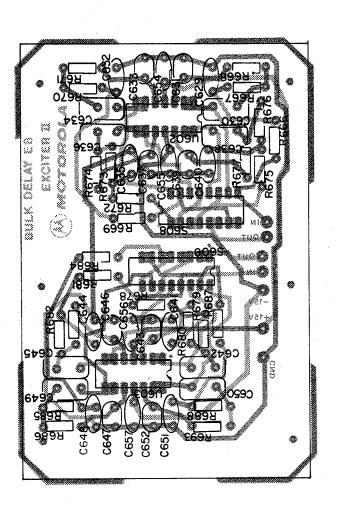
EXCITER

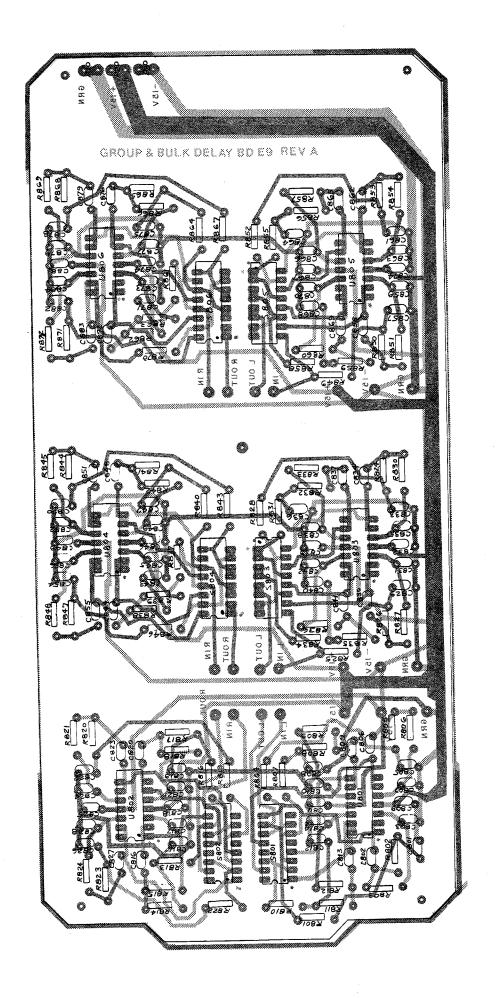

HOUSING CABLING	E2-A-0
BLOCK DIAGRAM SINGLE TRANSMITTER	BD-E3-I-II-B
BLOCK DIAGRAM DUAL TRANSMITTER	BD-E3-2-II-G
C-QUAM R.F. ENCODER	SC-E1-I/II-G
ALIDIO MATRIX AND FOLIAL IZATION	SC-E2-11-T
L+R AUDIO OUTPUT AMPLIFIER/SAMPLE TRANSMITTER	SC-E3-I/II-I
POWER SUPPLY	SC-E4-11-G
D.C. AMPLIELED TVPF 2	SC-E5-2-1/11-E
CINCLE TRANSMITTER DELAY AND PROCESSOR	SC-E6-1-II-A
DUAL TRANSMITTER DELAY EQUALIZATION AND PROCESSOR	SC-E6-2-11-M
AUDIO INTERFACE AMPLIFIER	
BULK DELAY SINGLE TRANSMITTER	SC-E8-11-C
BINARY AND BULK DELAY DUAL TRANSMITTER	SC-E9-II-B
SARRUONE AUDIO AMPLIEIER	SC-E26-II-A
INTERCONNECT DELAY/PROCESSOR SINGLE TRANSMITTER	IC-E6/E8-11-A
INTERCONNECT DELAY/PROCESSOR DUAL TRANSMITTER	IC-E6/E9-II-A
MONITOR	
	ED 1400 O
FUNCTIONAL DIAGRAM	FDM20G
MUDING DIAGRAM	WD-M20-0
A1/C	SC-IVI IU-L
ANO WANTEODING	WF-WIU-A
METER	SC-WITI-U
METER WAVEFORMS	WF-WIII-A
EARPHONE AUDIO AMPLIFIER (SEE EXCITER E26)	SU-IVI-20-A
MIXER	SU-IVIZ/-D
REMOTE PANEL	30-0
DEMOTE BANKS INTERCONNECT	16–36–6
DECODER	1 - MA2
B E ATTENUATOR	
POWER SUPPLY	

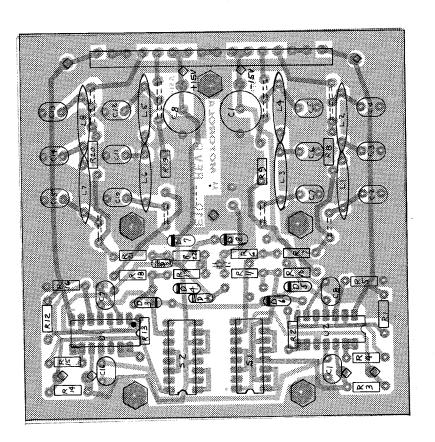
EXCITER ENCODER CIRCUIT CARD E1C COMPONENT VIEW

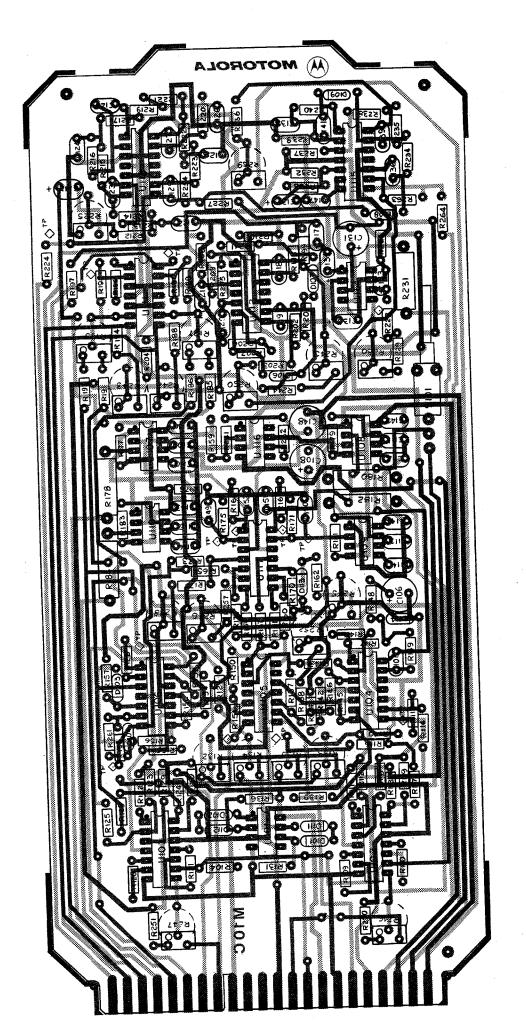

EXCITER AUDIO EQUALIZER MATRIX CIRCUIT CARD E2D-II component View

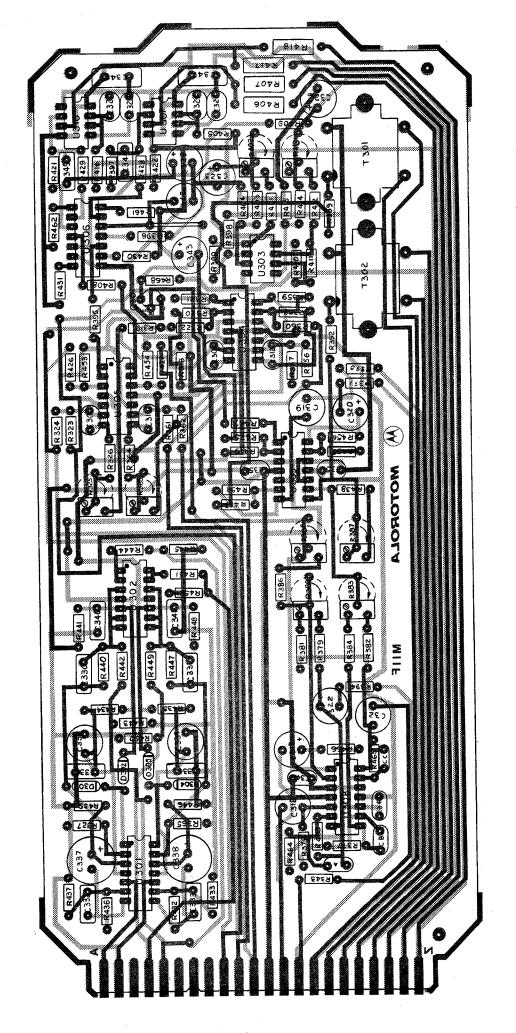

EXCITER L+R AMPLIFIER SAMPLE TRANSMITTER CIRCUIT CARD E3F COMPONENT VIEW

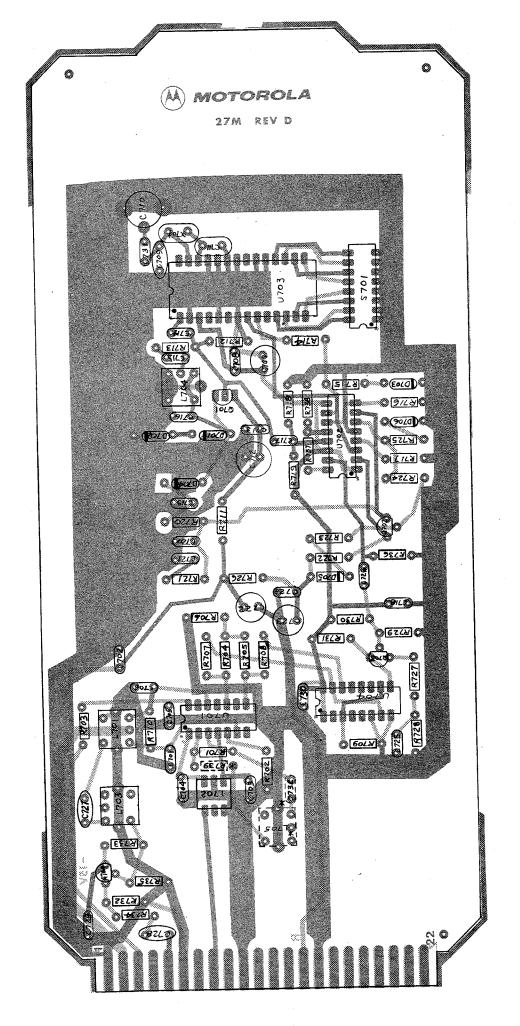

EXCITER POWER SUPPLY CIRCUIT CARD E4B-II COMPONENT VIEW

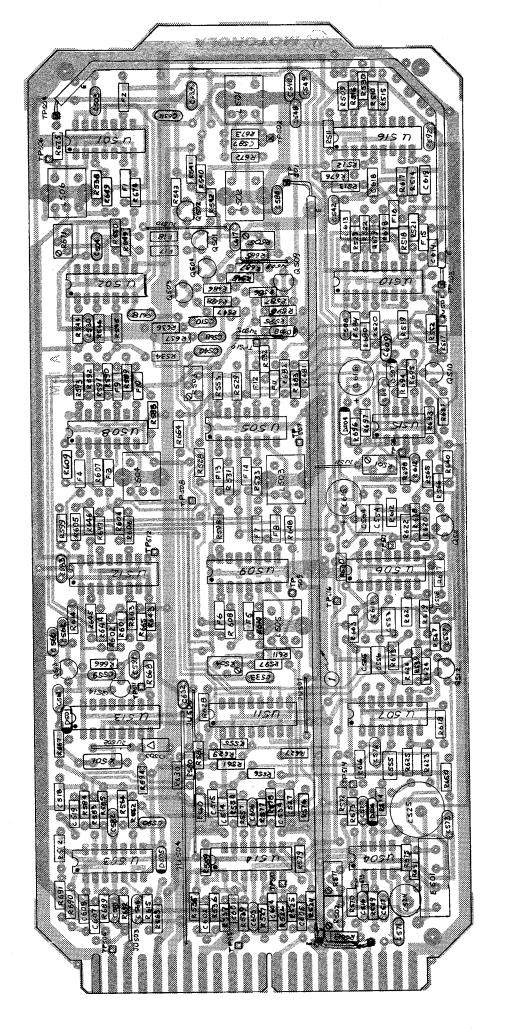

EXCITER R.F. AMPLIFIER CIRCUIT CARD E5E-II COMPONENT VIEW

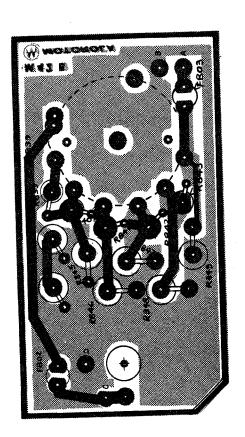

EXCITER AUDIO NIGHT PROCESSOR CIRCUIT CARD E6C-II COMPONENT VIEW

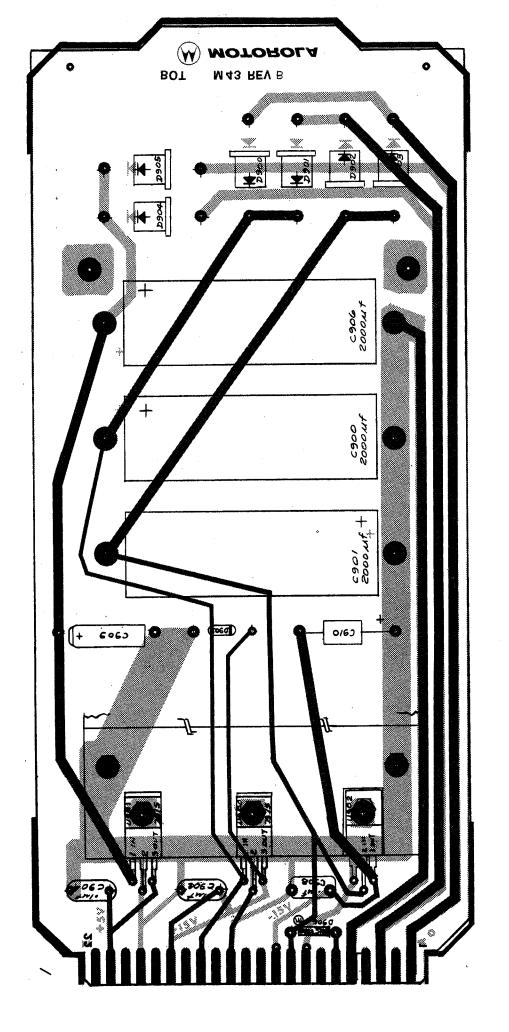

EXCITER BULK DELAY CIRCUIT CARD E8A-11 COMPONENT VIEW

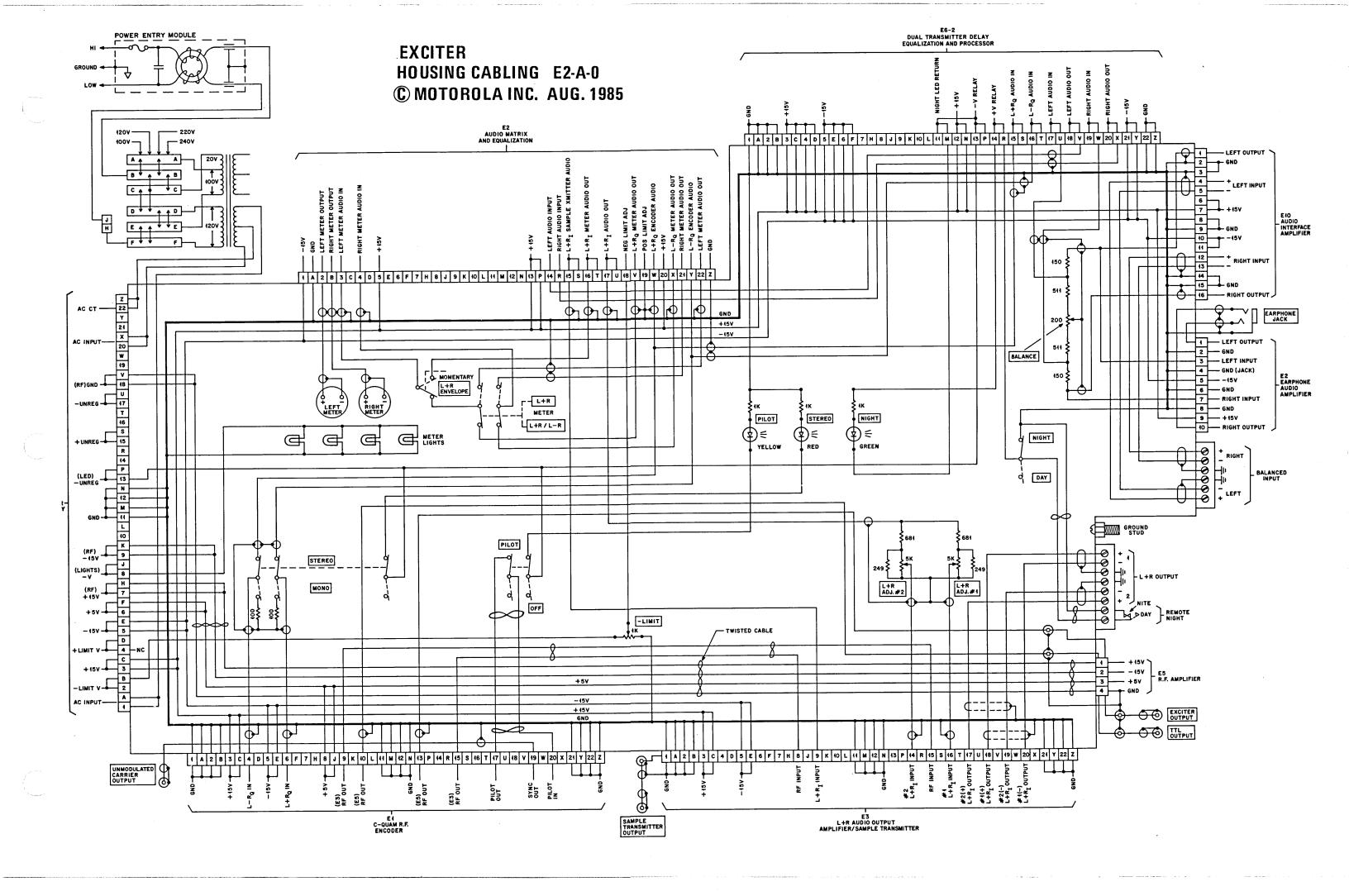

EXCITER BINARY AND BULK DELAY DUAL TRANSMITTER CIRCUIT CARD E9A COMPONENT VIEW

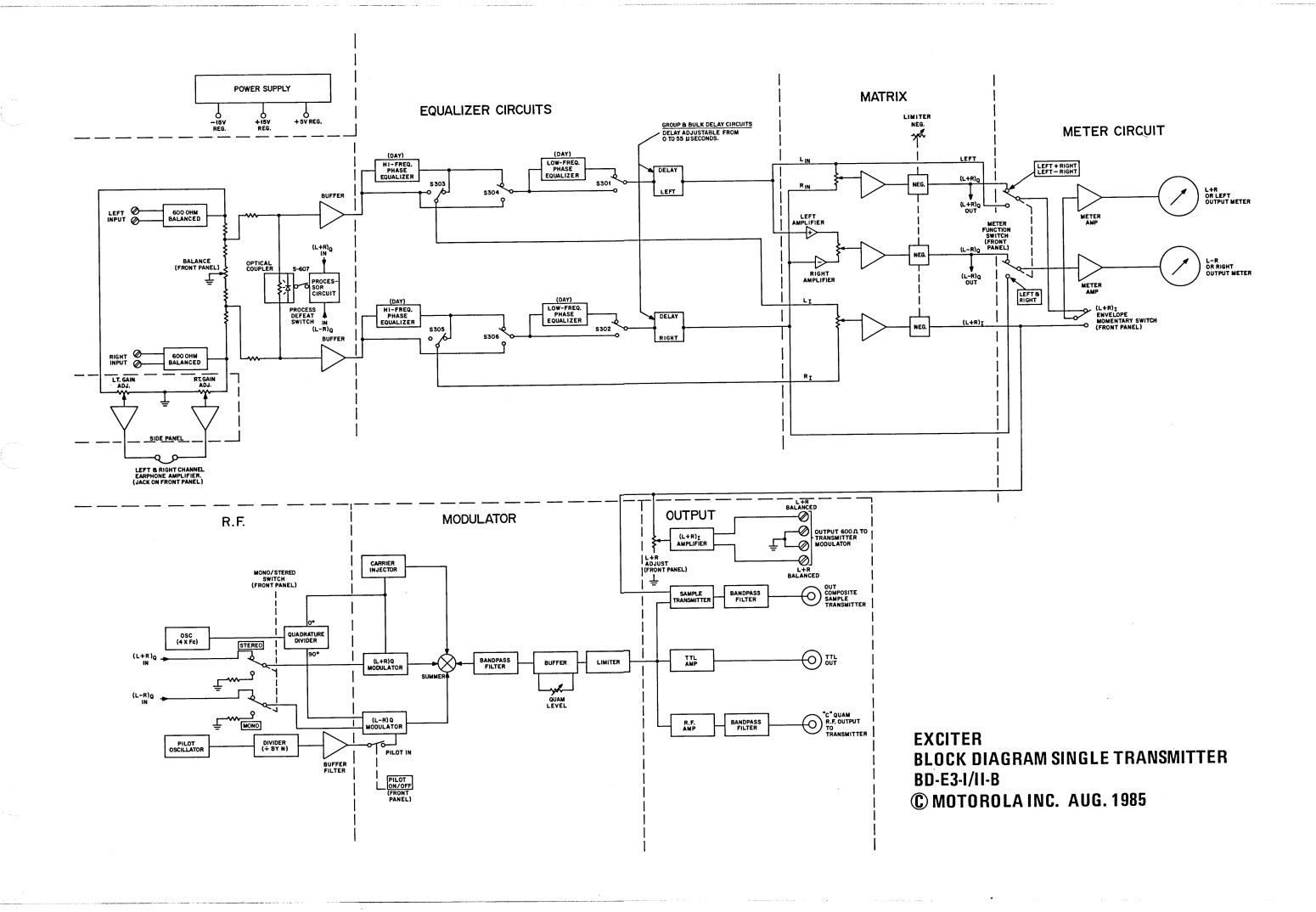

EXCITER AUDIO INTERFACE AMPLIFIER E10B

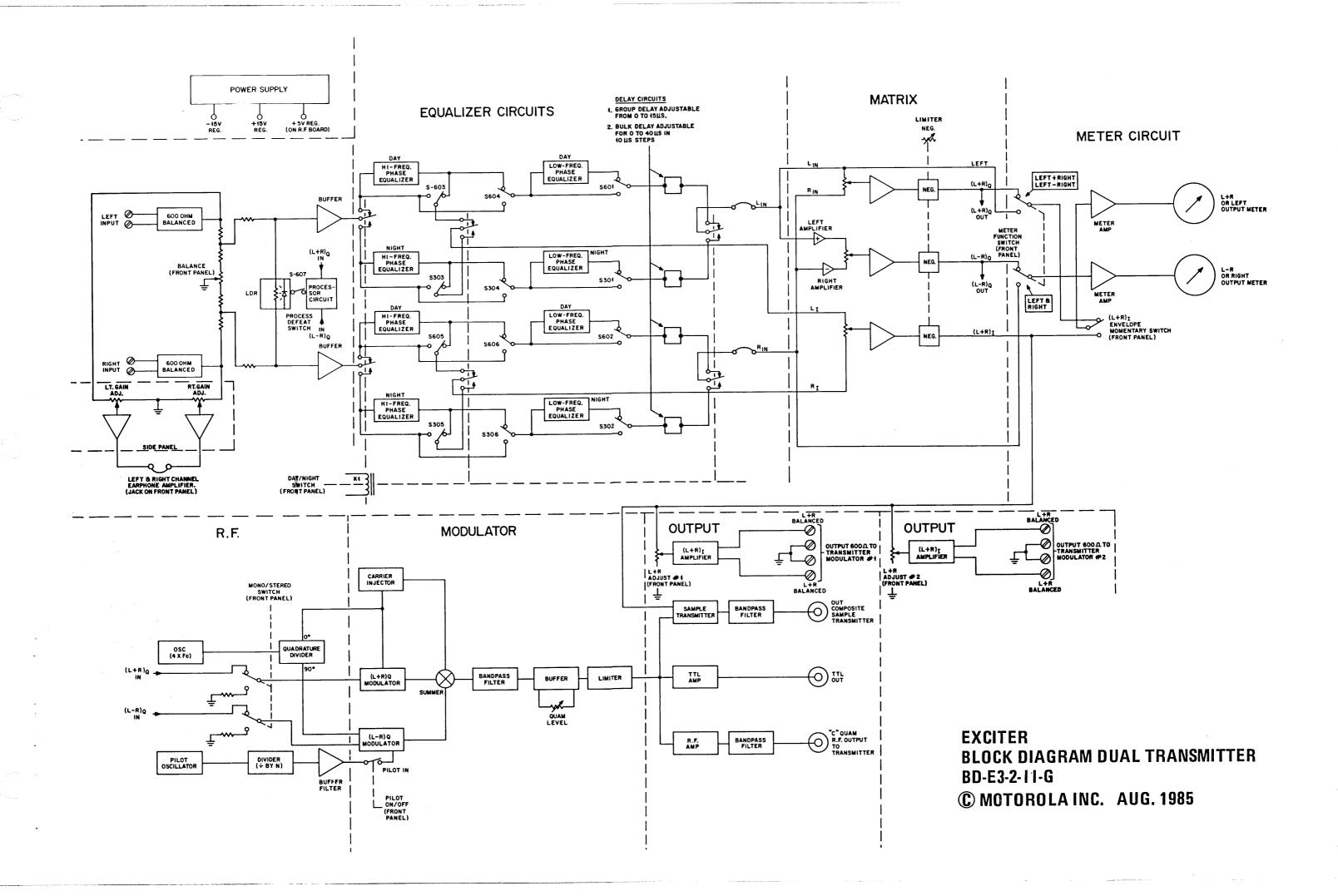

MONITOR AVC CIRCUIT CARD M10C COMPONENT VIEW

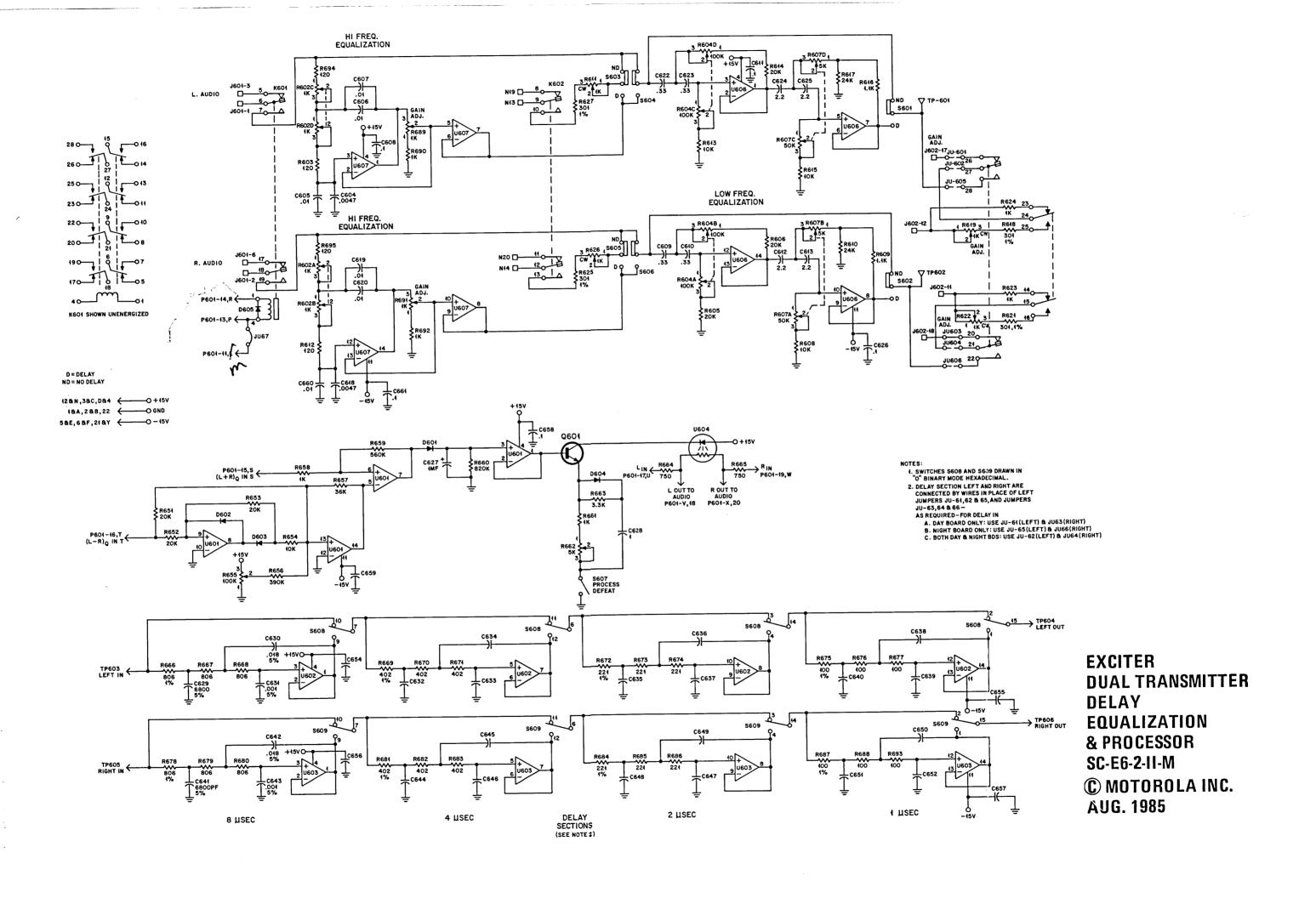

MONITOR METER CIRCUIT CARD M11F COMPONENT VIEW

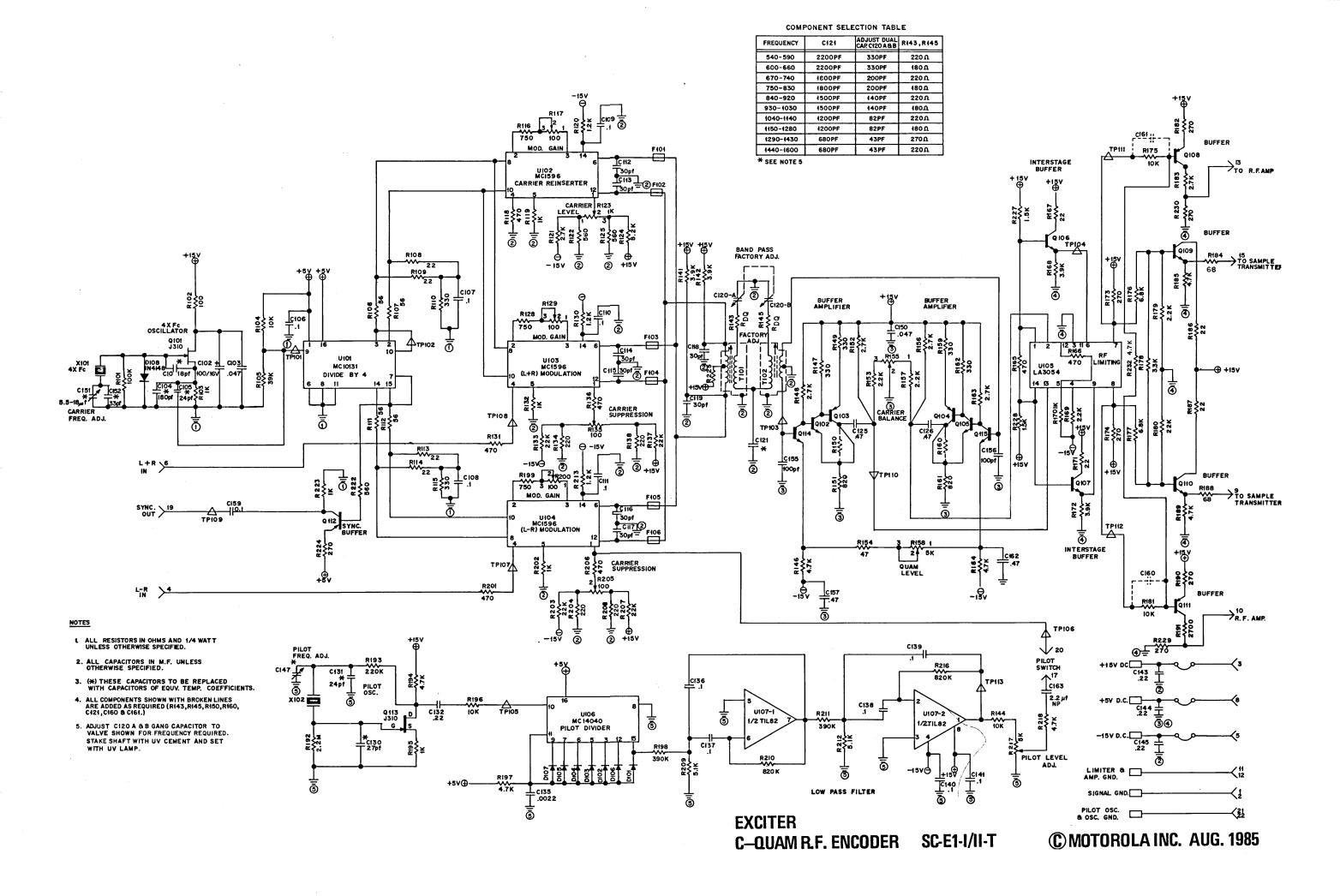

MONITOR MIXER CIRCUIT CARD M27D COMPONENT VIEW

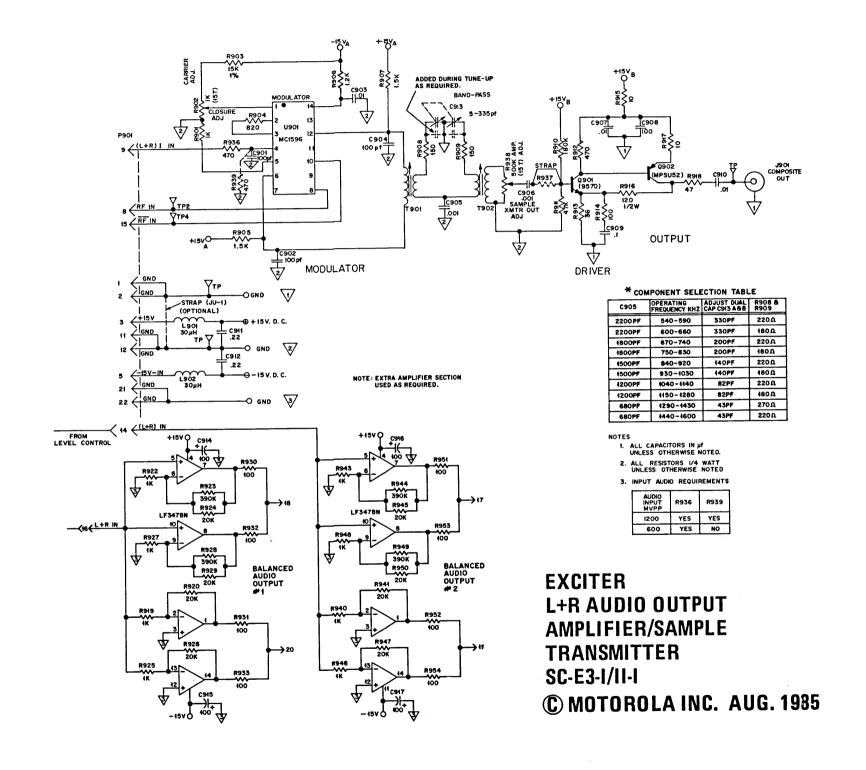

MONITOR DECODER CIRCUIT CARD M41A COMPONENT VIEW

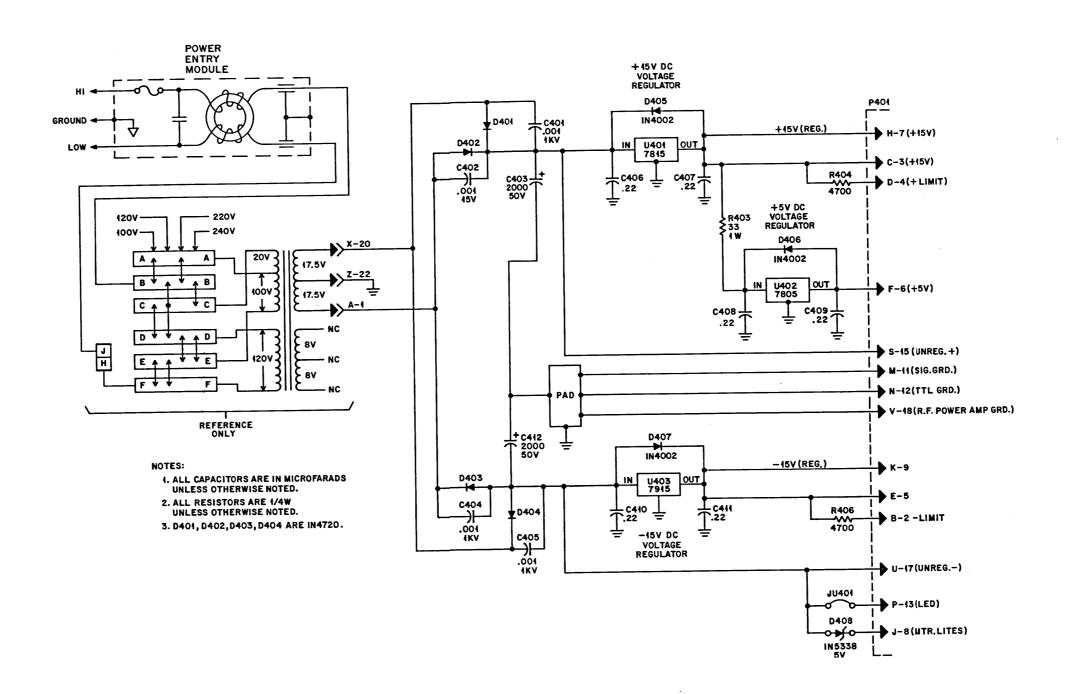


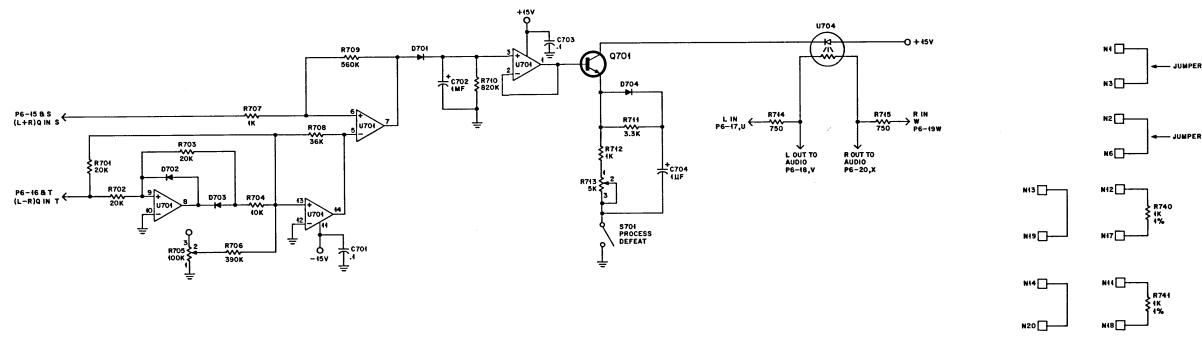

MONITOR RF ATTENUATOR CIRCUIT CARD M42B COMPONENT VIEW

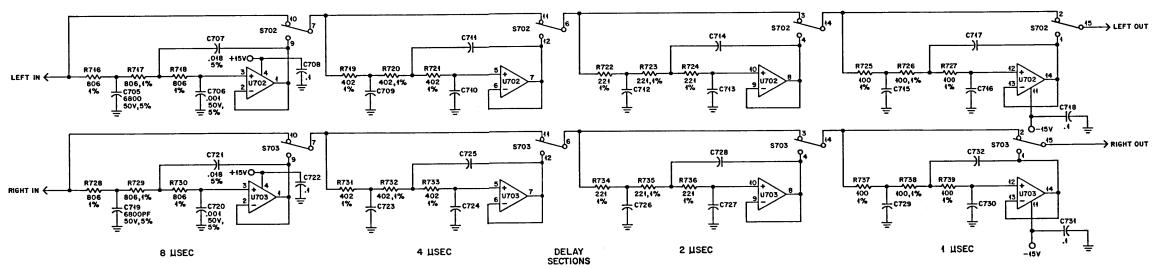



MONITOR POWER SUPPLY CIRCUIT CARD M43B COMPONENT VIEW

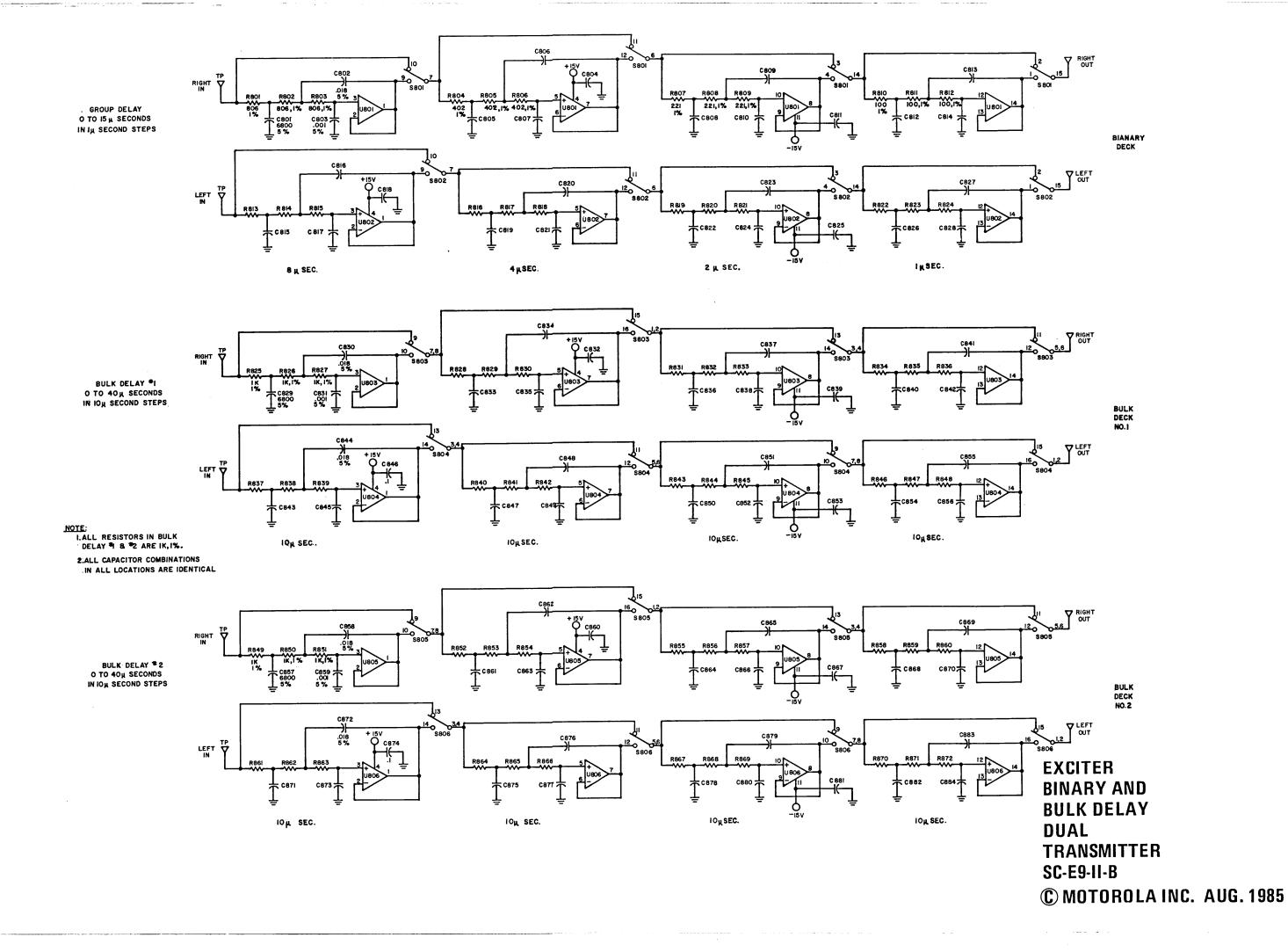


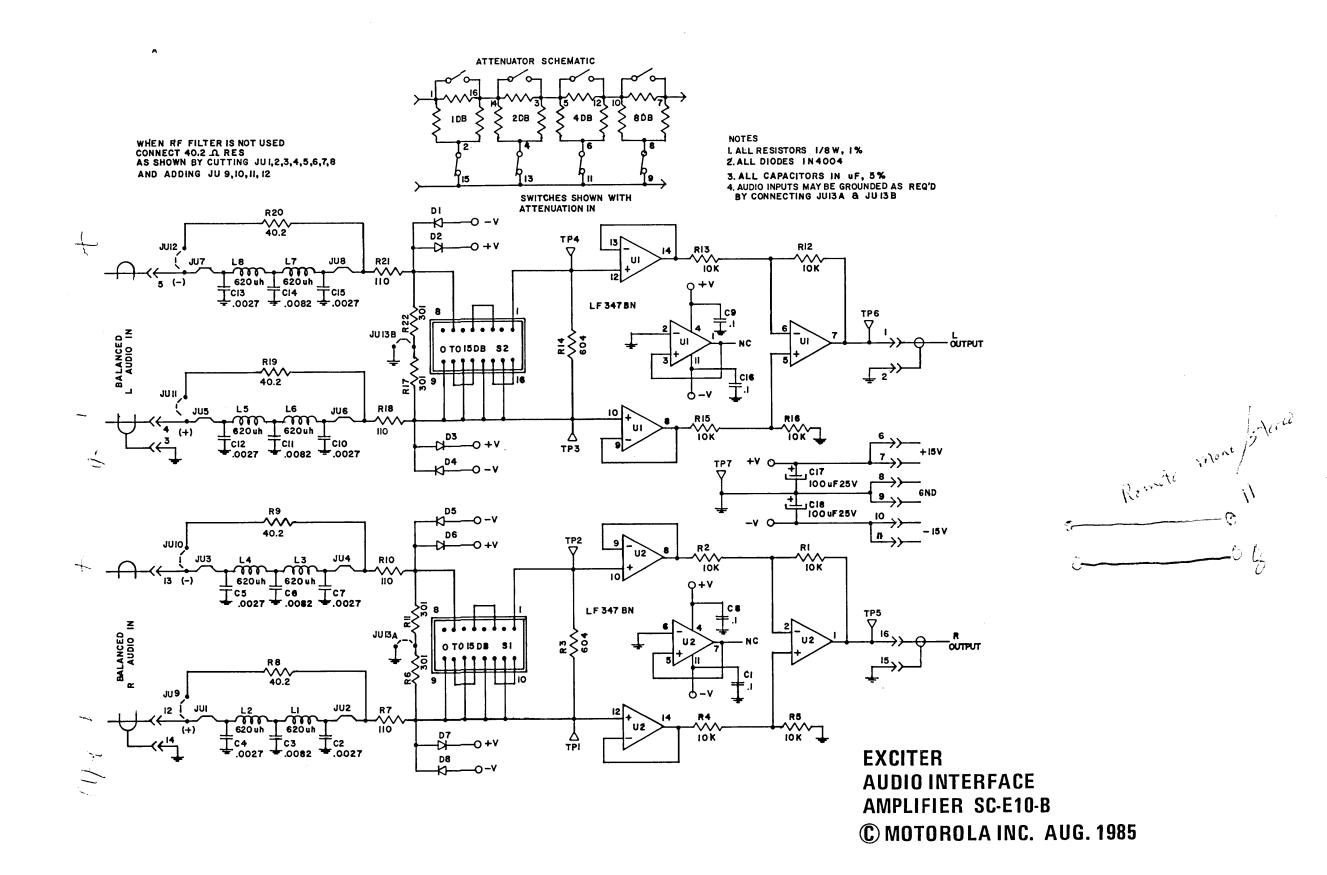


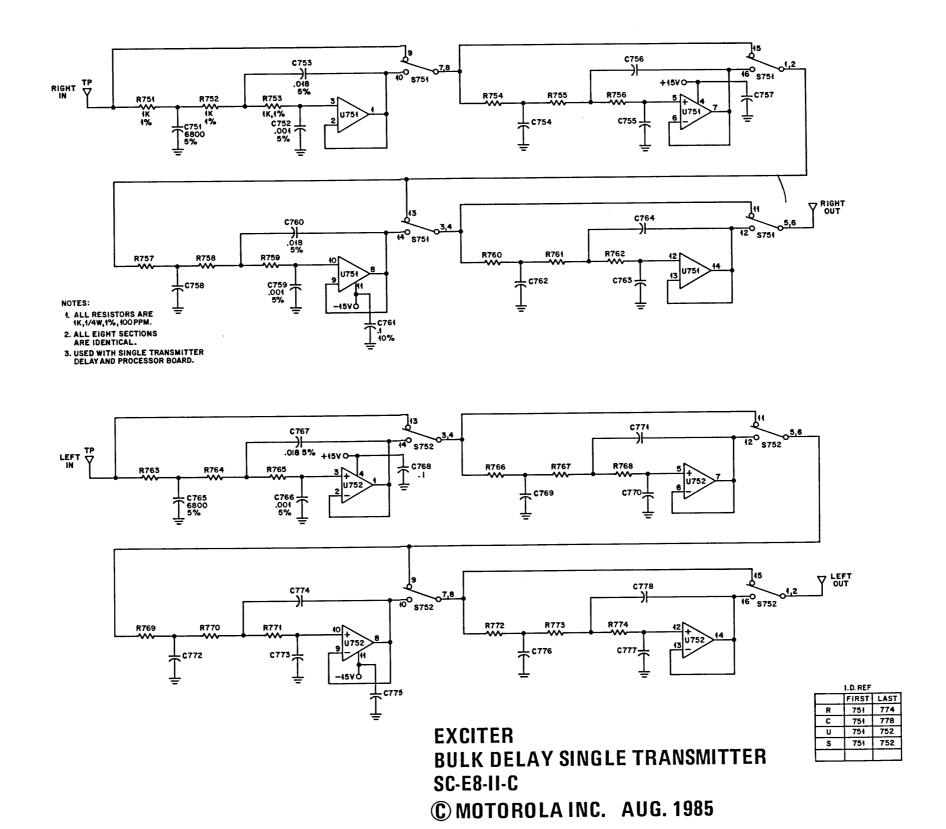


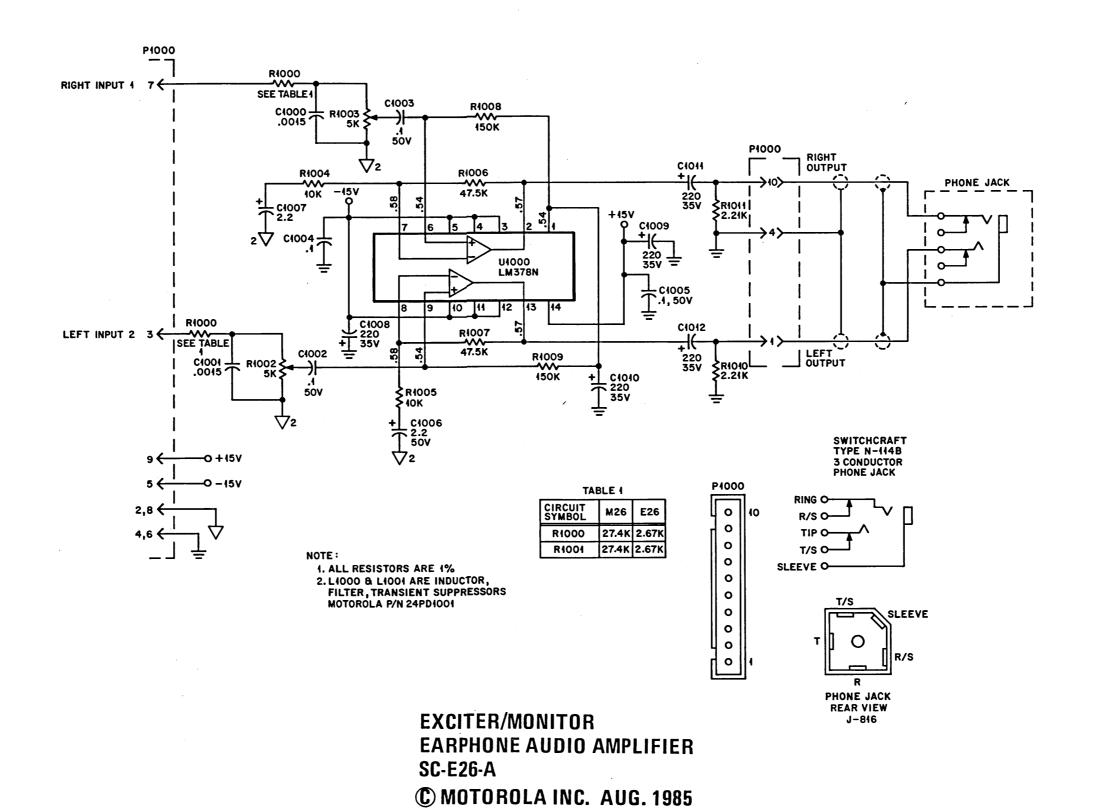

EXCITER
POWER SUPPLY
SC-E4-II-G
© MOTOROLA INC. AUG. 1985

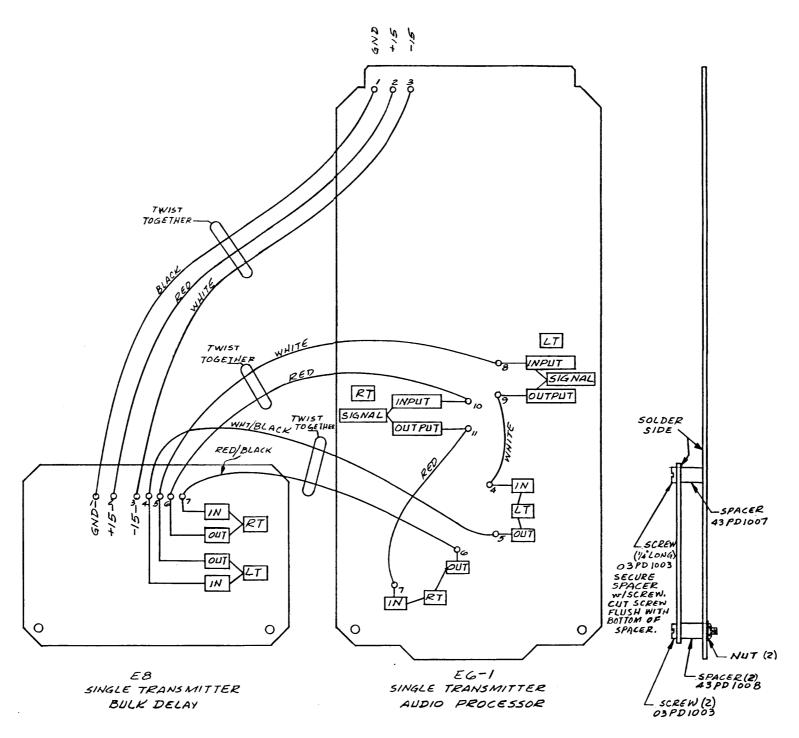
EXCITER
R.F. AMPLIFIER SC-E5-2-I/II-E

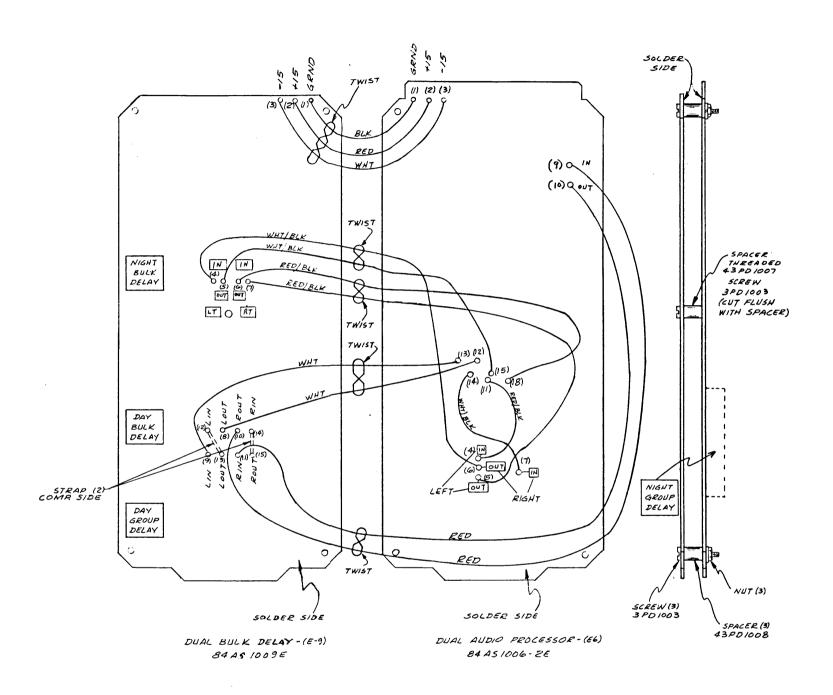

© MOTOROLA INC. AUG. 1985

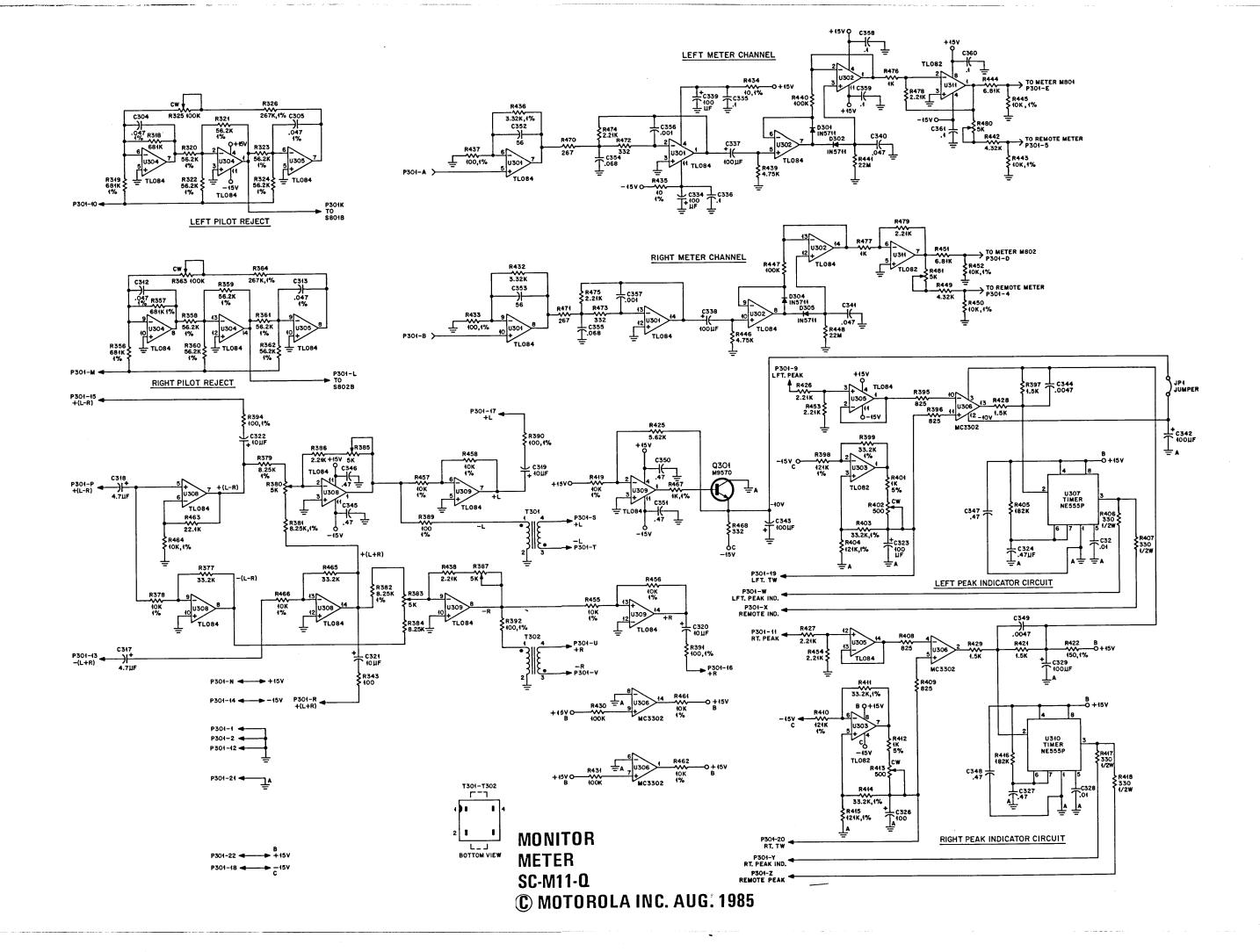


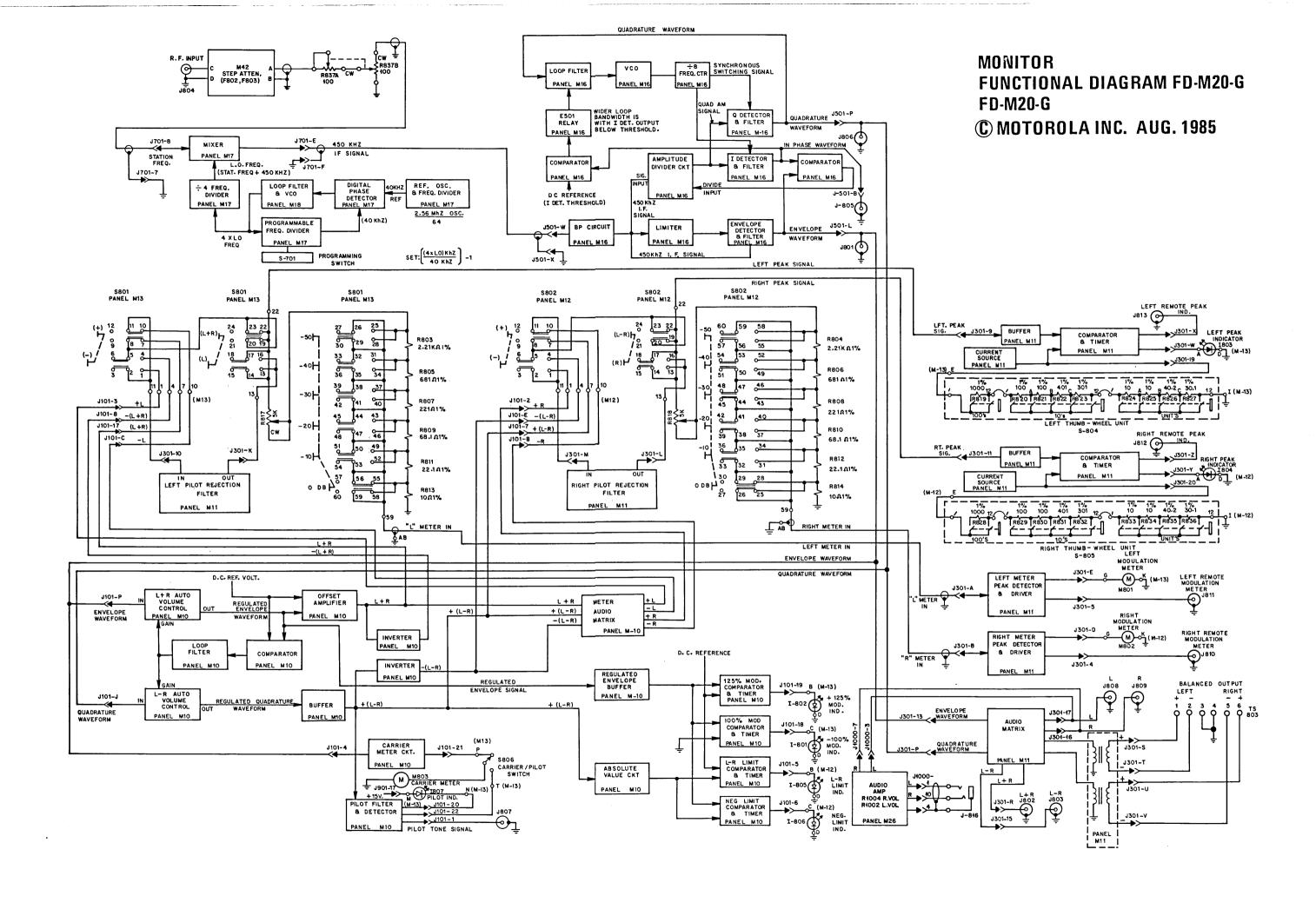


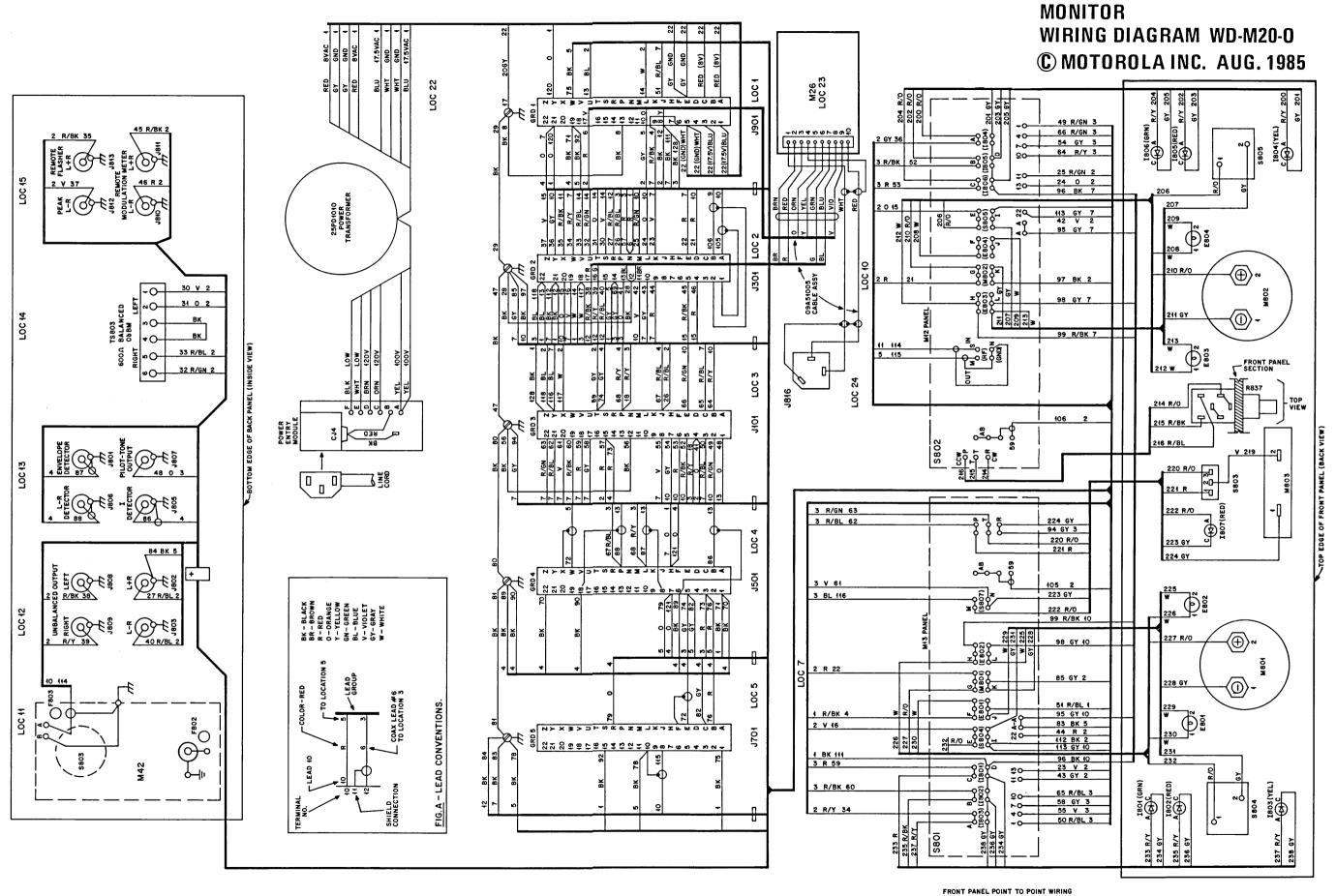

EXCITER
SINGLE TRANSMITTER DELAY AND PROCESSOR
SC-E6-I/II-A

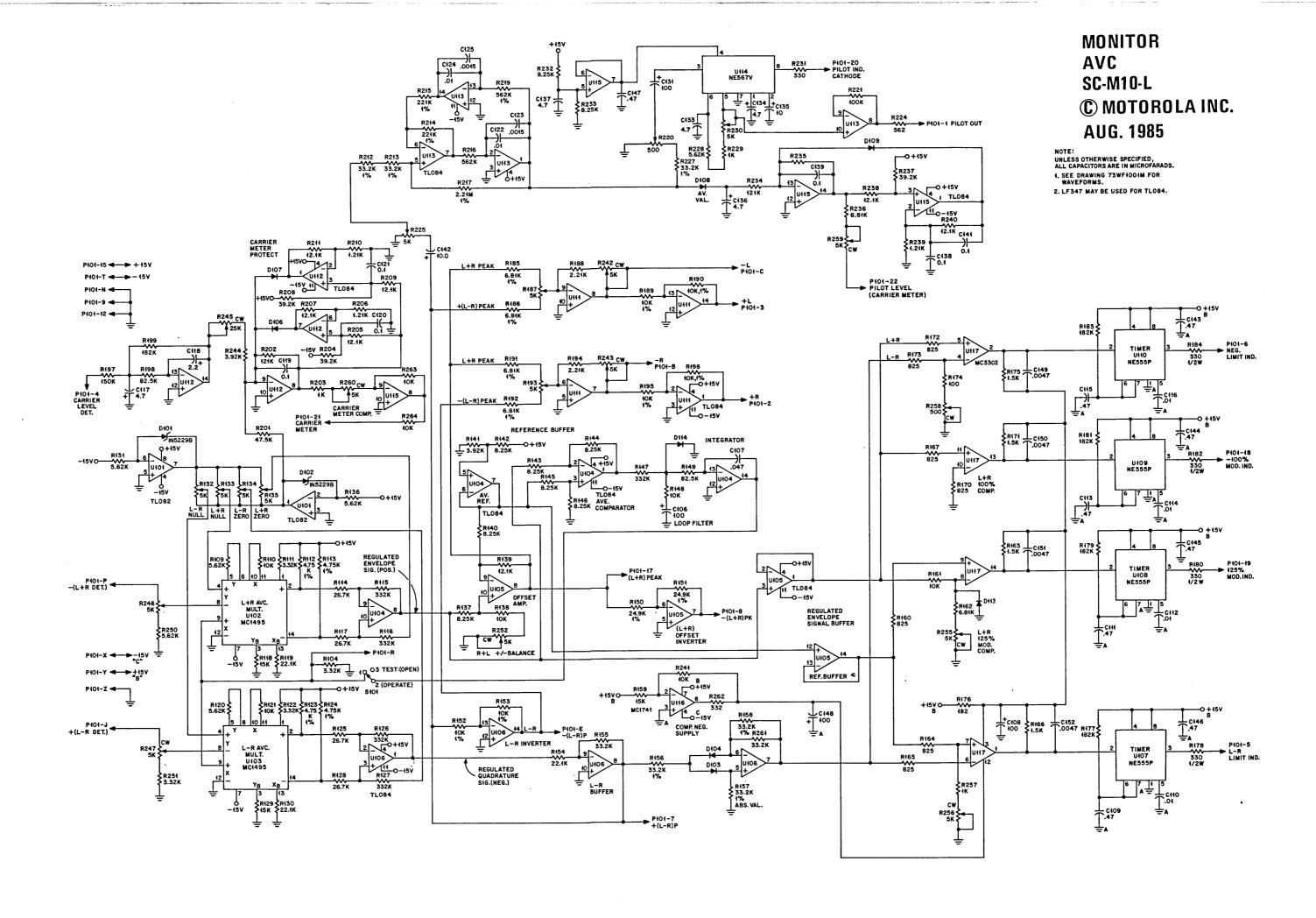

© MOTOROLA INC. AUG. 1985

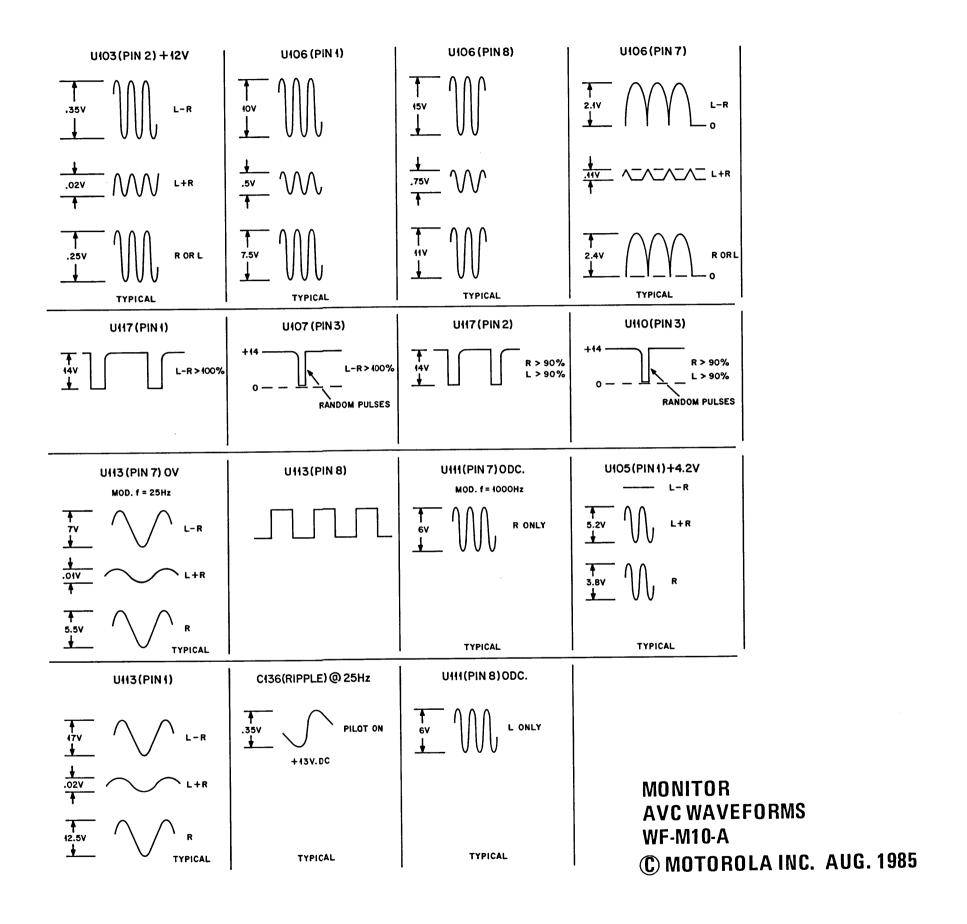


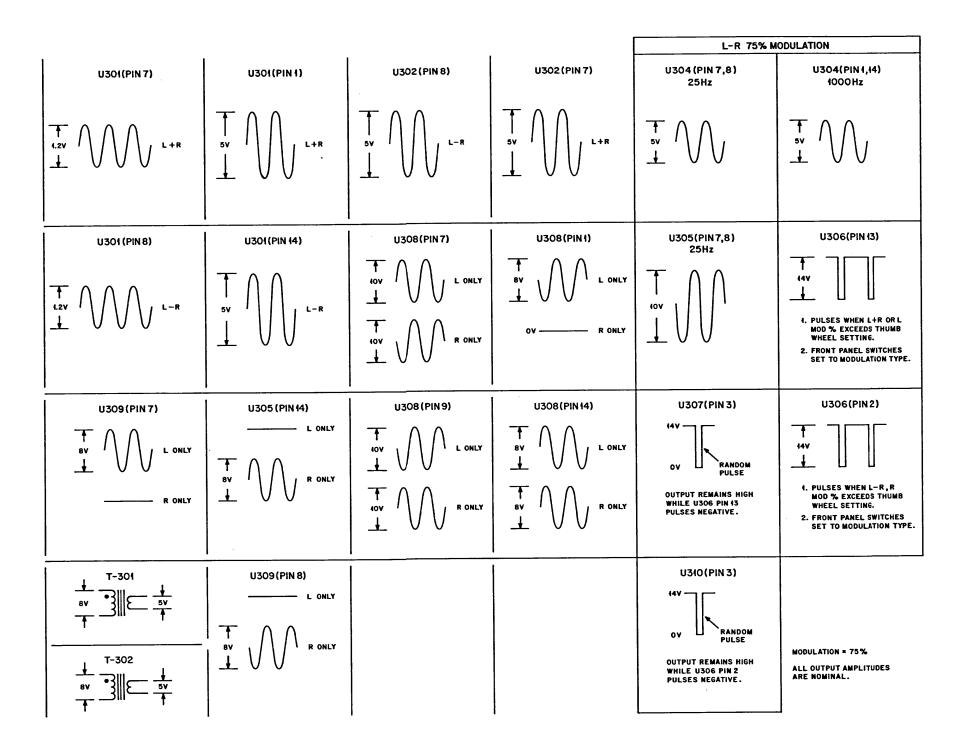


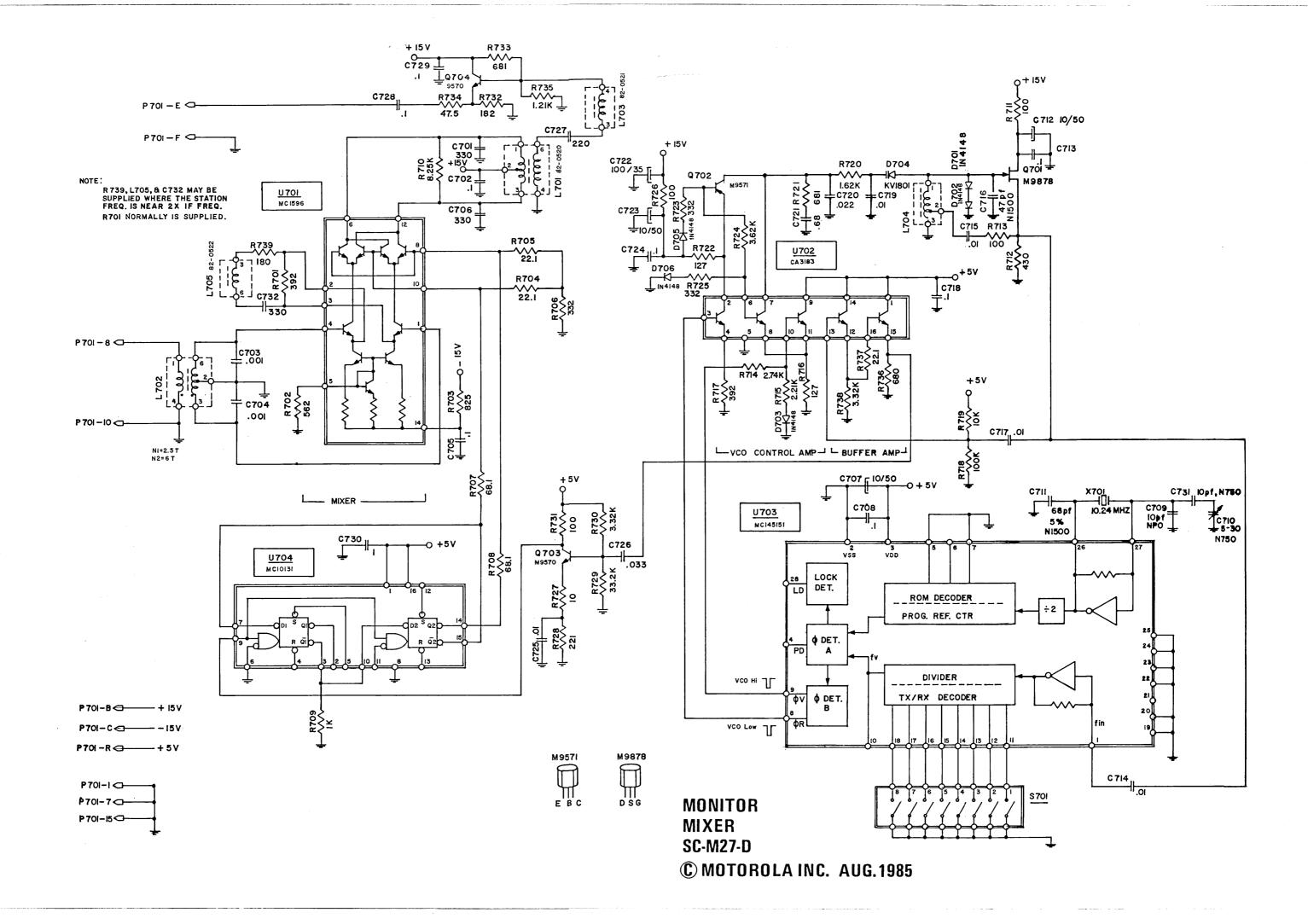


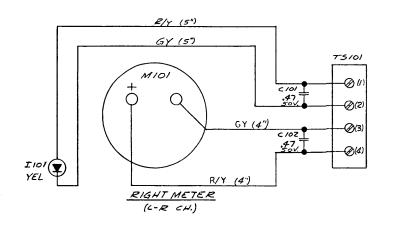

EXCITER
INTERCONNECT DELAY/PROCESSOR SINGLE TRANSMITTER
IC-E6/E8-II-A
© MOTOROLA INC. AUG. 1985

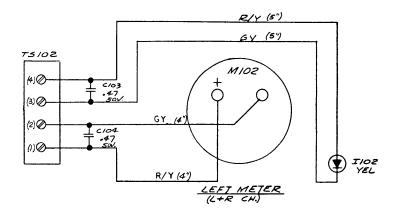

EXCITER
INTERCONNECT DELAY/PROCESSOR DUAL TRANSMITTER
IC-E6/E9-II-A
© MOTOROLA INC. AUG. 1985

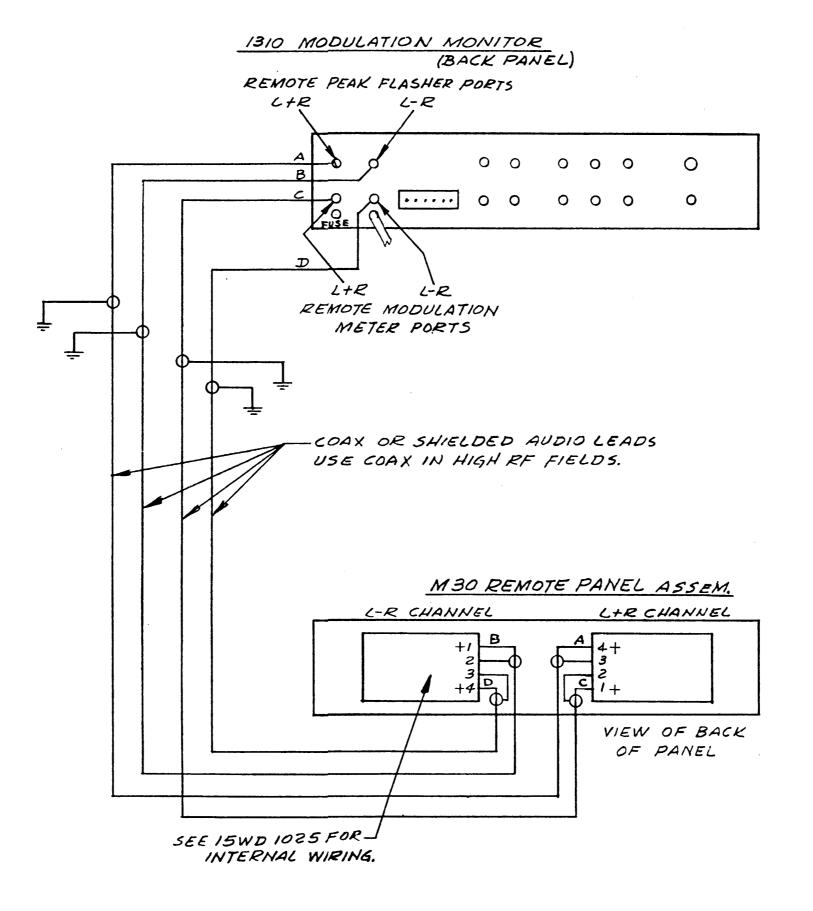


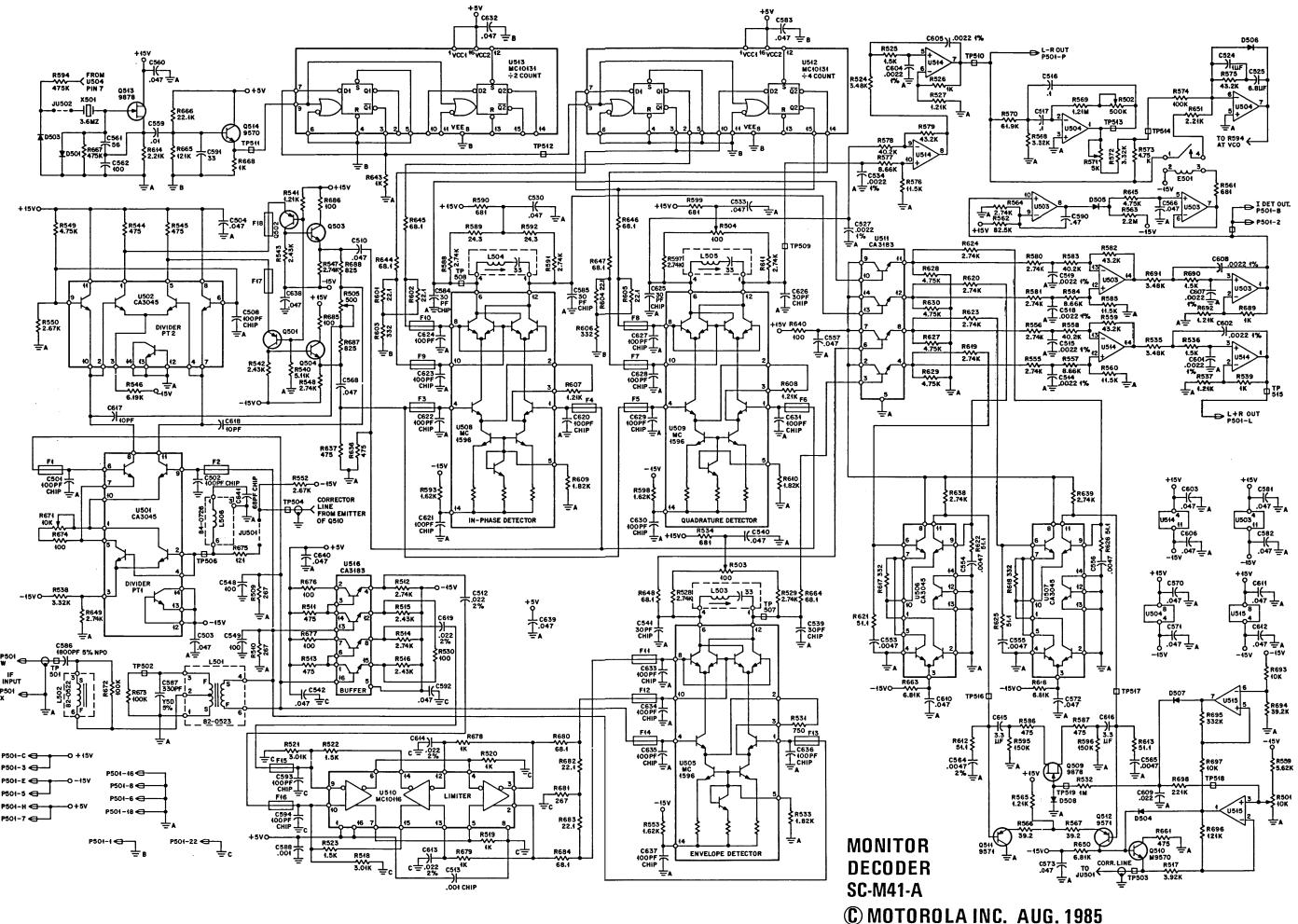


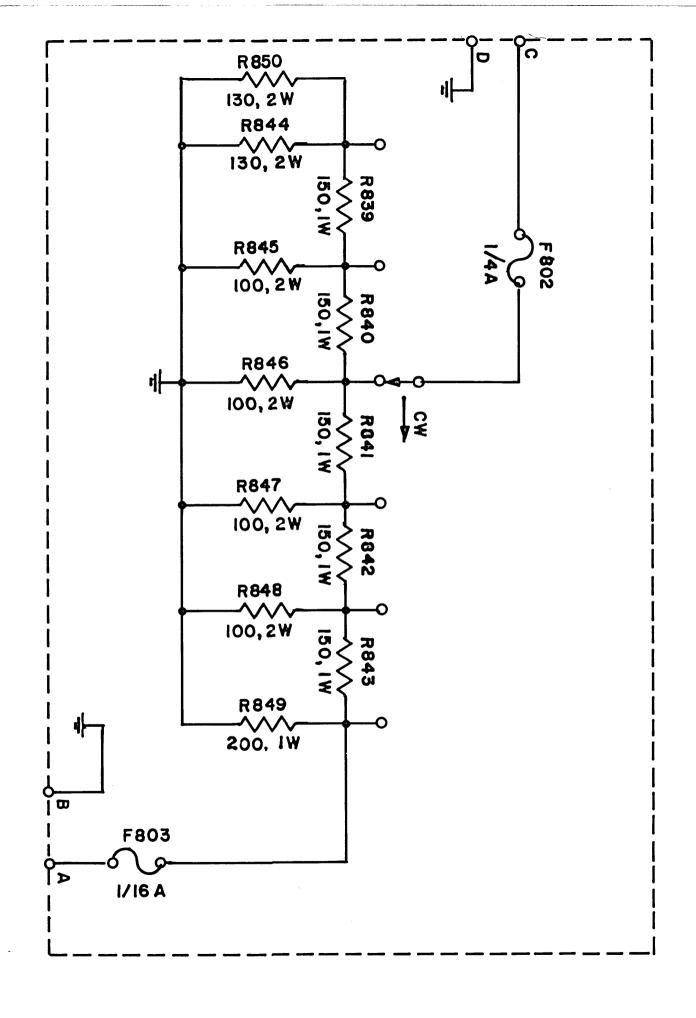

FRONT PANEL POINT TO POINT WIRING (LEADS NOS. 200 TO 239)
24 AWG R/O UNLESS LABELED OTHERWISE.

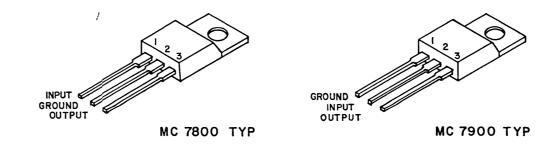


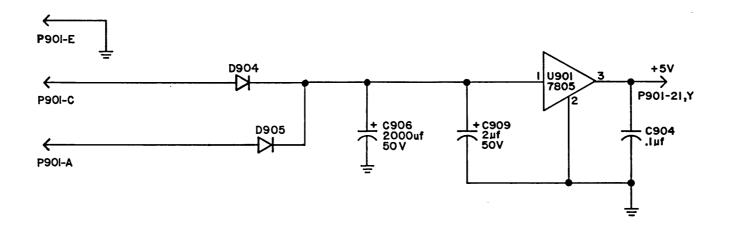


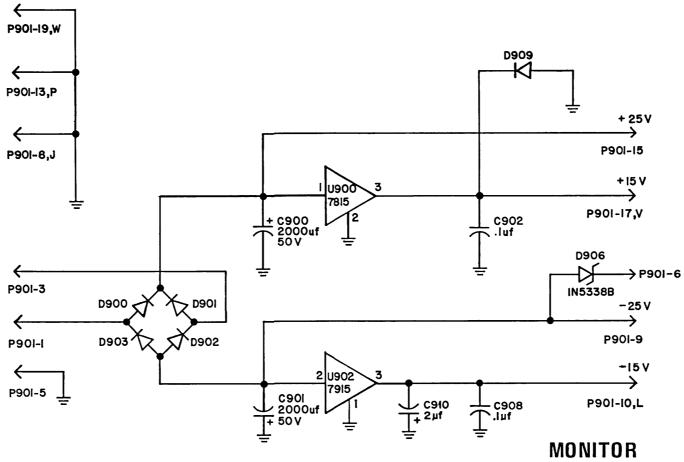

MONITOR
METER WAVEFORMS
WF-M11-A
© MOTOROLA INC. AUG. 1985



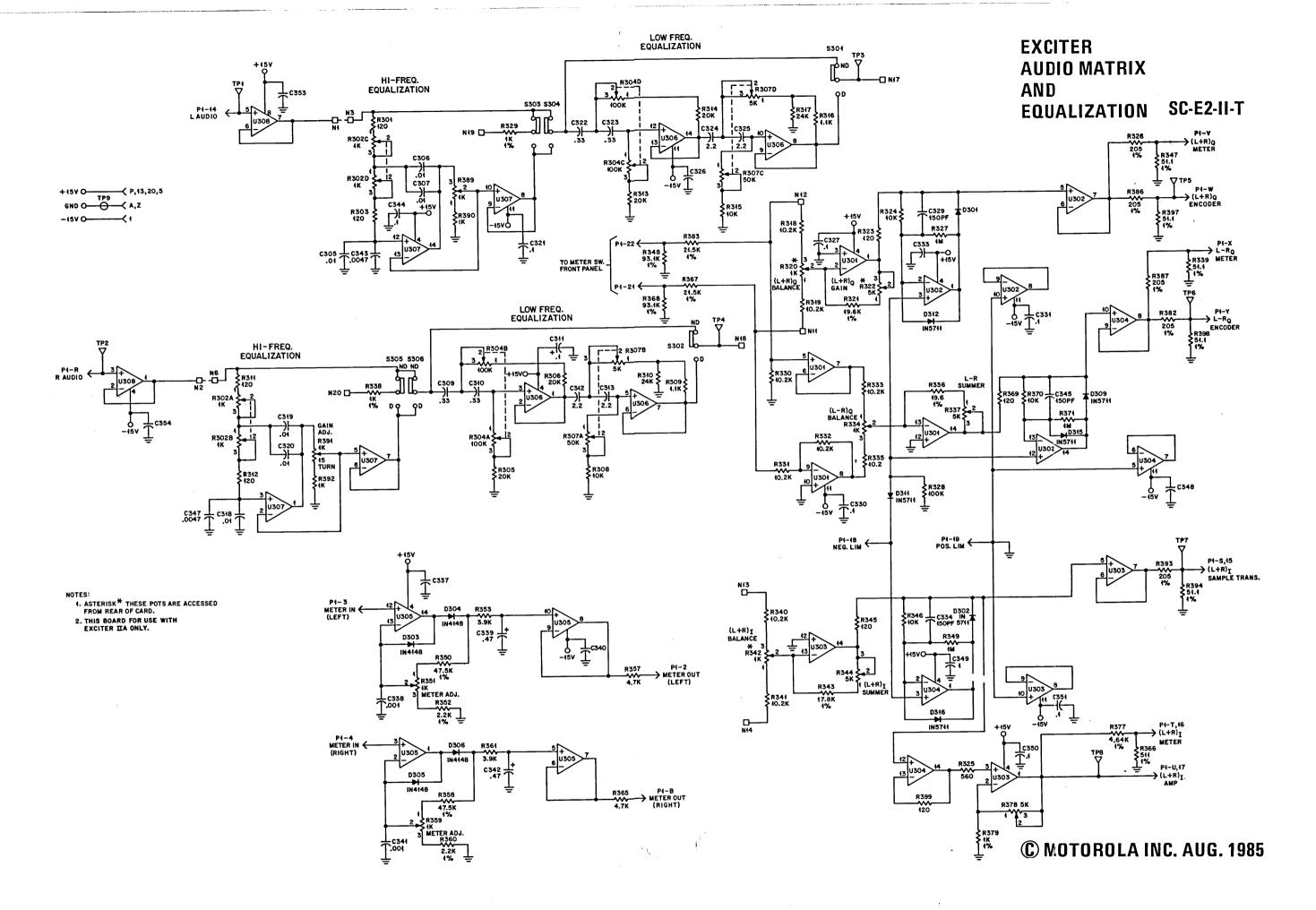

MONITOR
REMOTE PANEL
SC-M30-C
© MOTOROLA INC. AUG. 1985


MONITOR
REMOTE PANEL INTERCONNECT
IC-30-C
© MOTOROLA INC. AUG. 1985




© MOTOROLA INC. AUG. 1985

MONITOR
RF ATTENUATOR
SC-M42-B
© MOTOROLA INC. AUG. 1985



POWER SUPPLY SC-M43-A

© MOTOROLA INC. AUG. 1985

EXCITER PARTS LIST

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
1		CAPACITOR	21K865440	180 P	300 V	5%	MICA DM5
	C101						
2	C104	CAPACITOR	23511019A46	100 U	25 V	5%	LYTIC
3	C102	CAPACITOR	8511017A14	.047 U	50 V	5%	MYLAR
	C103 C150						
4	C105	CAPACITOR	21-84494841	24.0 P	300 V	5%	MICA DM5
	C131						
5	C106	CAPACITOR	21R40020503	.100 U	50 V	20%	CERAMIC Z5U
	C107						
	C108 C109						
	C110 C111						
	C140						
	C141 C159						
6		CAPACITOR	21-84494B	100 P	300 V	5%	MICA DM5
	C155 C156						
7		CAPACITOR	21R40020S14	.47 U	100 V	20%	CERAMIC Z5U
	C125 C126						
	C142 C146	•					
	C157						
	C158 C162						
8		TRIMCAP	19PD1001	5-335P	:		DUAL THR KT027M1310
Э	C120	CAPACITOR	21-84494833	30 P	300 V	5%	MICA DM5
	C112						
	C113 C114						
	C115 C116						
	C117		•				
	C118 C119						
	C130		pag gang pag yang pang tang kilim pang da di	തുന്ന 13	50 V	10%	MYLAR
10	C132	CAPACITOR	8D82905G11	.22 U	JØ V	T.C.V.	1113 kmFHV
	C143						
	C144 C145						•

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
11	C135	CAPACITOR	8511017A03	.0022U	50 V	5%	MYLAR
12	C136	CAPACITOR	8511017A17	. 100 U	50 V	5%	MYLAR
	C137 C138 C139						
13	C147	TRIMCAP	20ND1001	6-18P			GXB18000
14	C151	TRIMCAP	20582399D04	5.5-18			81F3650
15	C152	CAPACITOR		33 P	300 V	5%	MICA DM5
16	C163	CAPACITOR	23D84908S01	2.2 U	50 V		LYTIC ALU NONPOL
17		DIODE	48502054A00				SIGNAL 1N4148
	D101 D102 D103 D104 D105 D106						
	D107		*				
18	D108	TRANSISTOR	48R@@869878				FET J310
19	Q113	TRANSISTOR	48RØØ86957Ø				NPN 2N39Ø4
	Q102 Q105 Q106 Q107 Q109 Q110						
	Q114				·		:
20	Q115 Q103 Q104 Q108 Q111	TRANSISTOR	48R00869571				PNP 2N3906
21	Q112	RESISTOR	6S11009C97	100 K	1/4 W	5%	FCF
22	R101	RESISTOR	6511009025	100	1/4 W	5%	FCF
23	R102	RESISTOR	6S11009C49	1.0 K	1/4 W	5%	FCF
	R103 R119 R132 R170 R195 R202 R223						

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
24		RESISTOR	65110 0 9C73	10 K	1/4 W	5% FC	F
	R104						
	R144 R175						
	R181				•		
	R196						
25	nier	RESISTOR	6811009087	39 K	1/4 W	5% FC	F
26	R105	RESISTOR	6811009019	56	1/4 W	5% FC	F
	R106						
	R107						
	R111 R112						
27		RESISTOR	CS11009C09	22	1/4 W	5% FC	F
	R108						
	R109						
	R113 R114						•
	R167	•					
	R171						
	R186 R187						
28	KIOI	RESISTOR	6511009037	330	1/4 W	5% FC	F
	R11Ø			•		e '	
*	R115	,					
	R147 R149						
	R159						
	R162					m-/ m-m	\ ,_
29	R116	RESISTOR	6511009C46	750	1/4 W	5% FC	,r
	R128						
	R199		· · · · · · · · · · · · · · · · · · ·			~	m poult à pass supe à gaze supe
30	13447	TRIMPOT	18ND1006	100		UE.	ERMET 15T
	R117 R129						
	R135				•		
	R200						
31	R205	RESISTOR	6511009041	470	1/4 W	5% F0	CF
	R118						
	R131 R136						
	R165						
	R166						
	R201					•	
32	R206	RESISTOR	6511009051	1.2 K	1/4 W	5% F	CF
	R120						
	R130 R213						
	KC13						

#	ID	NAME	PART #	VALUE	W/V	TOL	DES	CRIPTION
33	R121 R148	RESISTOR	6511009C59	2.7K	1/4 W	5%	FCF	
	R152 R156 R163							
	R183 R191						•	
34	R122	RESISTOR	6S11009C43	560	1/4 W	5%	FCF	
	R125 R222							
35	R123	TRIMPOT	18ND1005	1.0 K	,		CERMET	15T
~~	R155		rmaammaa		4 / 6 11	E21-2		
36	R124	RESISTOR	6511009071	8.2 K		3%	FCF	
37		RESISTOR	6511009081	55 K	1/4 W	5%	FCF	
	R133 R137 R2Ø3 R2Ø7							
38		RESISTOR	6S11009C33	220	1/4 W	5%	FCF	
	R134							
	R138 R204							
	R208							
39		RESISTOR	6511009063	3.9 K	1/4 W	5%	FCF	
	R141					•		
	R142 R168							
	R172							
40		RESISTOR	6811009065	4.7 K	1/4 W	5%	FCF	
	R146 R164							
	R185							
	R189							
	R194							
	R197 R218							
	R232	•	• • • • • • • • • • • • • • • • • • •					
41		RESISTOR	6511009047	820	1/4 W	5%	FCF	
	R151	•						
42	R161	RESISTOR	6S11009C57	2.2 K	1/4 W	5%	FCF	
T has	R153	t then but in but I but I t		Seen OF Spin 1 1	# r		· wr	
	R157							
	R169							
	R179 R18Ø							
	MICHOL							

			1			
#	ID	NAME	PART #	VALUE	W/V TO	DESCRIPTION
43	R154	RESISTOR	6S11009C17	47	1/4 W 5%	FCF
44	R158 R217	TRIMPOT	18ND1007	5.0 K		CERMET 15T
45	R173	RESISTOR	6S11009C35	270	1/4 W 5%	FCF
	R174 R182 R190					
	R224 R229 R230					
46	R176 R177	RESISTOR	6511009069	6.8 K	1/4 W 5%	FCF
47	R178	RESISTOR	6811009061	3.3 K	1/4 W 5%	FCF
48	R184 R188	RESISTOR	6511009021	68	1/4 W 5%	FCF
49	R192	RESISTOR	6510164K42	2.2 M	1/4 W 5%	FCF
50		RESISTOR	6811009066	5.1 K	- 1/4 W 5%	FCF
51	R193	RESISTOR	6S11009D06	220 K	1/4 W 5%	FCF
52		RESISTOR	6S11009D12	390 K	1/4 W 5%	FCF
53		RESISTOR	6811009D20	820 K	1/4 W 5%	FCF
54	R225	RESISTOR	6511009001	10	1/4 W 5%	FCF
55		RESISTOR	6811009053	1.5 K	1/4 W 5%	FCF
56	T1Ø1	TRANSFORMR	24ND1004	Ø. ØØØØ	· ·	RF COIL 82-0498
57		IC	51R83Ø8FØ7			D FF DUAL MC10131L
58	U101 U102 U103	IC	51ND1008			BAL MODU MC1596L
59	U104	IC	51ND1009			TRANS ARRAY CA3054

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
60	U106	IC	51ND1010				PILOT DIV MC14040
61	U107	IC	51ND1009				R RPPL CTR TL082CP
62	X1Ø1	CRYSTAL	61A59ØA42-1				4 X STAT. FREQ.
63	X102	CRYSTAL	48-80055C01				PILOT FREQ.
64	E1	P.C.B.	84AW1001E				ENCODER
65 66 67	F101 F102 F103 F104 F105 F106	PIN IC SOCKET INDUCTOR	39ND1006 09ND1012 76-84069B01				TEST, VECTOR K24C 31N2919 FERRITE BEAD

E2 – AUDIO BOARD

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
1	C305 C306 C307 C318 C319	CAPACITOR		. Ø1∪	50 V	5,4	MYLAR
2	C350	CAPACITOR	21840020503	. 10 U	50 V	20%	CERAMIC Z5U
	C311 C321 C326 C327 C330 C331						
	C333 C337 C340						
	C344 C348 C349 C350 C351 C353	,					
3	C354	CAPACITOR	8S82Ø96J15	2.2 U	250 V	10%	MYLAR
-	C312 C313 C324 C325						
4	C338	CAPACITOR	8511017A01	.001 U	50 V	5%	MYLAR
5	C341 C339	CAPACITOR	21R40020S14	.47 U	20 V	20%	TANTULUM
€.	D301 D302 D307 D308 D309 D310 D311 D312 D313 D314 D315 D316	DIODE					SIGNAL 1N5711

E2 - AUDIO BOARD

# .	αI	NAME	PART #	VALUE	W/V TOL	DESCRIPTION
7	R302A /B R302C /D		18ND1ØØ9	1 K		2 SECT. CERMET
8	R3Ø4A /B R3Ø4C /D	TRIMPOT	18ND1008	100 K		2 SECT. CERMET
9	S301 S302 S303 S304 S305 S306	SWITCH	40ND1017			TOGGLE SPDT BRD MNT
10	R305 R306 R313 R314	RESISTOR	6S11009C80	20 K	1/4 W 5%	FCF
11	R307A /B R307C /D	TRIMPOT	18ND1010	50K/5K	÷	2 SECT. CERMET
12	R3Ø8 R315 R324 R346 R37Ø R373 R38Ø	CONNECTOR RESISTOR	6S11009C73			
14	R309 R316		6911009050			FCF
15	R310 R317	RESISTOR	6811009082	24 K	1/4 W 5%	FCF
16	R318 R319 R330 R331 R332 R333 R335 R340 R341	RESISTOR	6811049092	10.2 K	1/4 W 1%	FMF 100 PPM

E2 - AUDIO BOARD

#	ID	NAME	PART #	VALUE	W/V TO	DL DES	CRIPTION
17		TRIMPOT	18ND1005	1 K		CERMET	15T
- ·	R32Ø R334 R342 R351						
	R359 R389 R391						
18	R321 R336	RESISTOR	6511049J23	19.6 K	1/4 W 1%	FMF 100	PPM
19	R322 R337 R344	TRIMPOT	18ND1007	5 K		CERMET	15T
20	R378 R3Ø1 R3Ø3	RESISTOR	6511009027	120	1/4 W 5%	FCF	
	R311 R312 R323						
	R345 R369 R399						
21	R325	RESISTOR	6511009C43	560	1/4 W 5%	FCF	
22	R326 R382 R386 R387 R393	RESISTOR	6S11049B28	205	1/4 W 1%	FMF 100	PPM
23	R327 R349 R371 R374 R381	RESISTOR	6511009	1 M	1/4 W 5%	FCF	
24	R385 R329	RESISTOR	6811049894	1 K	1/4 W 1%	FMF 100) PPM
	R338 R379 R390 R392						
25	R339 R347 R394 R397	RESISTOR	6511049A69	51.1	1/4 W 1%	FMF 100) PPM
	R398		*				

E2 - AUDIO BOARD

#	ID	NAME	PART #	VALUE	WZV	TOL	DESCRIPTION
26	R343	RESISTOR	6S11@49D16	17.8 K	1/4 W	1%	FMF 100 PPM
27	R348	RESISTOR	6S11049D85	93.1 K	1/4 W	1%	FMF 100 PPM
	C309 C310 C322 C323	CAPACITOR	8511Ø44A3Ø	.33 U	50 V	5%	MYLAR
29	R35Ø R358	RESISTOR	6S11049D57	47.5K	1/4 W	1%	FMF 100 PPM
30	R352 R360	RESISTOR	6511 049 C28	2.21 K	1/4 W	1%	FMF 100 PPM
31		RESISTOR	6811009063	3.9 K	1/4 W	5%	FCF
35		RESISTOR	6811009065	4.7 K	1/4 W	5%	FCF
33	R366 R395	RESISTOR	6511049866	511	1/4 W	1%	FMF 100 PPM
	R367 R383	RESISTOR	6811Ø49D24	21.5 K	1/4 W	1%	FMF 100 PPM
35		RESISTOR	6511049059	4.64 K	1/4 W	1%	FMF 100 PPM
36		RESISTOR	6S11Ø49BØ8	127	1/4 W	1%	FMF 100 PPM
37	U3Ø8	IC	51ND1007	. ØØØØ			OP AMP DUAL TLØ82CP
38	U302 U303 U304 U305 U306 U307	ic	51ND1002				OP AMP QUAD LF347BN
39	C343 C347	CAPACITOR	8S11017A063	. 0047U	50V	5%	MYLAR
40	E2	P.C. BOARD	84AW1002E				AUDIO EQUAL. MATRIX
41 42 43		CONNECTOR PINS BOOT	Ø9PD1Ø1Ø 39ND1ØØ6 38ND1ØØ5				10 PIN TEST VECTOR K24C RED SWITCH BOOT

E2 – AUDIO BOARD

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
44 45		BOOT	38ND1006			5	WHITE SWITCH BOOT SIGNAL 1N4148
• 1	D303 D304 D305						
46	D306 C355	CAPACITOR	8511017A07	. 00680	50 V	5%	MYLAR
47	C336	CAPPACITOR	8S11Ø17A1Ø	.018 U	50 V	5%	MYLAR
48	C328 C329 C334 C335 C345	CAPACITOR		150 P		10%	CERAMIC DISC
49	R328	RESISTOR	6S11049D88	100 K	1/4 W	1%	FMF 100 PPM

E3 - SAMPLE TRANSMITTER

#	· ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
1	C902	CAPACITOR	21D82133603	100 P	500 V	5%	DISC N750
2	C9Ø4 C9Ø3 C9Ø7	CAPACITOR	8511017A08	.01 U	50 V	5%	MYLAR
3	C910	CAPACITOR	8S11 0 17A01	.001 U	100 V	5%	MYLAR (RADIAL)
4	C906	CAPACITOR	23811Ø19A46	100 MF	25 V	20%	LYTIC
5	C914 C915	CAPACITOR	21R40020503	. 1 U	50 V	20%	Z5U CERAMIC
6	C909	CAPACITOR	8D829Ø5G11	.22 U	50 V	10%	MYLAR
7	C912 C913	CAPACITOR	20ND1002				TUNING DUAL
8	L901 L902	COIL.	24S83397LØ1	30 U			RF CHOKE
Э	Q9 Ø 1	TRANSISTOR	48RØØ86957Ø				NPN 2N3904
10	Q9 0 2	TRANSISTOR	,				PNP MPS-U52
11	R901 R919 R922 R925 R927	RESISTOR	6511009049	1 K	1/4 W	5%	FCF
12	R902	TRIMPOT	18ND1005	iK			CERMET 15T
13	R903	RESISTOR	6S11049K09	15K	1/4W	1 %	FMF 100 PPM
14	R9Ø4	RESISTOR	CS11009C47	820	1/4 W	5%	FCF
15	R905 R907	RESISTOR	CS11009C53	1.5 K	1/4 W	5%	FCF
16	R906	RESISTOR	6511009051	1.2 K	1/4 W	5%	FCF
17			6S11ØØ9DØ4			5%	FCF
18	R911	RESISTOR	CC11009C89	47 K	1/4 W	5%	FCF

E3 - SAMPLE TRANSMITTER

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
19	R912 R936	RESISTOR	6S11009C41	470	1/4 W	5%	FCF
20		RESISTOR	6S11009C14	36	1/4 W	5%	FCF
21	R913 R914	RESISTOR	6S11009C25	100	1/4 W	5%	FCF
	R930 R931 R932 R933						
22	R915	RESISTOR	6S11009C01	10	1/4 W	5%	FCF
23	R917	RESISTOR	6S10164B10	120	1/2 W	5%	FCF
24	R916	RESISTOR	6S11009C17	47	1/4 W	5%	FCF
25	R918 R920 R923 R926	RESISTOR	6511009C80	20 K	1/4 W	5%	FCF
26	R929	RESISTOR	6S11009D12	390 K	1/4 W	5%	FCF
27		TRIMPOT	18ND1011	500 K			CERMET 15T
28	R938 T901 T902	TRANSFORME R	24ND1004				RF COIL 82-0984
29		IC	51ND1002				OP AMP QUAD LF347BN
30		IC	51ND1008				MODULATOR MC1596L
31		P.C. BOARD	84AW1003E				
38		RECEPTACLE	E1010Ne0				BNC PCB MT. RT.ANGL
33 34 35	F	PIN SCREW POST	39ND1006				TEST, VECTOR K24C 4-40 x 3/16 7/16 STANDOFF SHIELD
36		PLATE	26PD1004				GI I I III III

E4 - POWER SUPPLY

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION	٠
1	0404	CAPACITOR	8511017A01	.001 U	50 V	5%	MYLAR (RADIAL)	
	C401 C402 C404 C405							
2	C4Ø3 C412	CAPACITOR	23CØ5253DØ1	2000 U	50 V		LYTIC	
3	C4Ø6	CAPACITOR	8D82905G11	.22 U	50 V	10%	MYLAR	
	C407 C408 C409 C410							
	C411	*\	48-82525611	ZAME	100V		RECT. POWER IN4720	
4	D4Ø1 D4Ø2 D4Ø3 D4Ø4	DIODE	40-02323611	OHMP	1650		NECT FUNER INTILO	
5	D405 D406 D407	DIODE	48-82466H21	1AMP	200 V		RECT. IN4002	
٤	D4Ø8	DIODE	48ND1005	.SAMP_	5.1 V		ZENER IN5338B	
7	R4Ø3	RESISTOR	6510164012	33	1 W	5%	FCF	
8	R4Ø4 R4Ø6	RESISTOR	6810164A52	4.7 K	1/2 W	5%	FCF	
9	U4Ø1	IC	51-83222M19	. 0000	+15 V		REGULATOR MC7815CT	
10	U402	IC	51-84320A47	. 0000	+57		REGULATOR MC7805CT	
11	U4Ø3	IC	51ND1011		-15 V		REGULATOR MC7915CT	
12		P.C. BOARD	84AW1004E				POWER SUPPLY	
13 14 15 16 17 18 19 20 21 22		INSULATOR INSULATOR INSULATOR RETAINER SCREW NUT SCREW NUT SCREW SPACER HEATSINK	14-591A4313 14-84268AØ1 14-8418ØCØ1 42-82688MØ1 3S4ØØ854 2S131435 3S131281 2S121841				MYLAR TRANSISTOR SHOULDER WASHER DIODE SQUARE 4-40X1/2 SL RHD EXL 4-40X1/4 EXTLKW 6-32X3/8 PL HXH EXL 6-32X5/16 4-40X5/16 PH HXH EX 4-40X2" POST FEM/FE	

E5 - RF AMPLIFIER

#	ID	NAME	PART #	VALUE	W/V TOL	DESCRIPTION
1	C511	CAPACITOR	21R40020S03	.1 U	50 V 20%	MONOLYTHIC Z5U
2		CAPACITOR	21V5180E62	270 PF	100 V 5%	DISC CERAMIC N150
3	C510 C509	CAPACITOR	21D82428B15	.005 U	100 V 20%	DISC CERAMIC X5R
4	C507 C508	CAPACITOR	21R40020S14	.47 U	50 V 20%	MØNØLYTHIC Z5U
	C501 C502 C503 C504 C505					
5	C506 D501	DIODE	48ND1006		62 V	ZENER IN4759A
6	D502 D503	DIODE	48ND1007		400 V	RECT 1N4004 1A
7	R5@1	RESISTOR	6S11009A25	100	1/4 W 5%	FCF
	R502 R506					
8	R508 R503	RESISTOR	6S11009C41	47Ø	1/4 W 5%	FCF
9	R505	RESISTOR	6511009037	330	1/4 W 5%	FCF
10		RESISTOR	6511009009	22	1/4 W 5%	FCF
11	R510	RESISTOR		7.5 M	1/4 W 5%	FCF
12	R512	RESISTOR	6S11009D05	200 K	1/4 W 5%	FCF
13	R516	RESISTOR	6S11009C34	240	1/4 W 5%	FCF
14	R517	RESISTOR	6511009C49	1 K	1/4 W 5%	FCF
15	R519 R520 5 R521		6511009035	270	1/4 W 5%	FCF
1(R522 6 R504 R507	TRIMPOT	18ND1005	1 K		CERMET 15T

E5 - RF AMPLIFIER

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
17	R513 R514	TRIMPOT	18ND1011	500 K			CERMET 15T
18		TRIMPOT	18ND1Ø12	10 K			CERMET 15T
19	Q5Ø1	TRANSISTOR	48RØØ869571				2N3906 PNP
20	Q503 Q504	TRANSISTOR	48ND1008				FET 2VNØ108L SILIC.
21		CHOKE		500UH			TYPE 5256
22	L503	XFORMER	25PD1006				RF MCL T2.5-6T
23	T501 T502	XFORMER	25PD1005				RF D2275
24	E5	P.C. BOARD	84AW1ØØ5E				RF AMPLIFIER 2
25	J501 J502 J503 J504	RECEPTACLE	09PD1007				BNC PANEL MNT SHØRT
26 27 28 29		BRACKET BRACKET PIN TERM. BLK.	07PD1006 39ND1006				FOR 3 BNC JACKS FOR 2 BNC JACKS TEST, VECTOR K24C 4 TERMINAL BLOCK
35 36 37 38		SPACER HEAT SINK SCREWS NUTS SCREWS SCREWS WIRE WIRE IC	43ND1006 26ND1005 03-136910 2-131435 3ND1008 3-136138 3DND1800 3DND2209 51ND1013				6-32 x 1/4 x 2 RND THM6025 4-40X1/2 PH FILHD. 4-40X1/4 NUT W/WASH 4-40X3/16 PHILLIPS 6-32X3/8 PHILLIPS SOLID BUSS 18GA, 1/4 22GA WHITE SN75123N DUAL DRIVE LM317T VOLT.REG
40 41		SHIELD SCREW	26PD1003 3-136138				COVER 6-32 X 3/8 PHL HX

E6/1 — AUDIO BOARD (1 XMTR NITE)

#	ID	NAME	PART #	VALUE	W/V TOL	DESCRIPTION
1	R74Ø	RESISTOR	6511049894	i K	1/4 W 1%	FMF 100 PPM
2	R741 R7Ø7	RESISTOR	6S11009C49	1 K	1/4 W 5%	FCF
3	R712 R709	RESISTOR	6S11ØØ9D16	560 K	1/4 W 5%	CF
4	R7Ø1 R7Ø2 R7Ø3	RESISTOR	6511009080	20 K	1/4 W 5%	FCF
5	R7Ø8	RESISTOR	6511009C86	36 K	1/4 W 5%	FCF
6	R7Ø4	RESISTOR	6911009073	10 K	1/4 W 5%	FCF
7	R7Ø6	RESISTOR	6511009D12	390 K	1/4 W 5%	FCF
8	R7Ø5	TRIMPOT	18ND1013	100 K	· · · · · · · · · · · · · · · · · · ·	CERMET 15T
9	R71Ø	RESISTOR	6S11009D20	820 K	1/4 W 5%	FCF
10	R714 R715	RESISTOR	6911009046	750	1/4 W 5%	FCF
11	R711	RESISTOR	6511009061	3.3 K	1/4 W 5%	FCF
12		TRIMPOT	18ND1007	5 K		CERMET 15T
13	R716 R717 R718	RESISTOR	6811049885	806	1/4 W 1%	FMF 100 PPM
	R728 R729 R73Ø					
14		RESISTOR	6811049856	402	1/4 W 1%	
15	722 R722 R723 R724 R734 R735 R736		6S11Ø49B31	221	1/4 W 1%	FMF 100 PPM

E6/1 - AUDIO BOARD (1 XMTR NITE)

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
16	R725 R726 R727 R737	RESISTOR	6S11Ø49A97	100	1/4 W	1%	FMF 100 PPM
	R738 R739						
17	C7Ø1 C7Ø3 C7Ø8 C718	CAPACITOR	21R40020S03	.1 U	50 V	20%	CERAMIC Z5U
٠	C722 C731				-		
18	C7 0 2	CAPACITOR	23811019A09	1 MF	50 V	20%	LYTIC ALUM.
19	C704 C705 C709 C712 C715	CAPACITOR	8511017A07	. 0068U	50 V	5%	MYLAR (RADIAL)
	C719 C723 C726 C729					ar T	
20	C707 C711 C714 C717 C721 C725 C728	CAPACITOR	8S11017A10	.Ø18 U	5Ø V	5%	MYLAR (RADIAL)
21	C732 C706 C710 C713 C716 C720 C724 C727 C730	CAPACITOR	8S11017A01	.001 U	5Ø V	5%	MYLAR (RADIAL)
22		DIODE	48-02054A00				IN4148 SIGNAL

E6/1 - AUDIO BOARD (1 (XMTR NITE)

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
23		TRANSISTOR	48RØØ86957Ø			•	NPN 2N3904
24	Q7Ø1	IC	51ND1002				OP AMP QUAD LF347BN
25	U701	IC	51ND1002				OP AMP QUAD LF347BN
	บ702 บ703						
26		IC	51ND1004				COUPLER OPT. VACTEC
27	U704	SWITCH	40PD1016				16 POS DIP SPDT
	5702 5703						TEST VECTOR K24C
28 29		PIN SWITCH	39ND1006 40ND1017				TOGGLE BRD MNT SPDT
30	S7Ø1	CONNECTOR	Ø9ND1Ø11				6 PIN
31 32		CONNECTOR P.C. BOARD	09ND1010				10 PIN E6/1 P.C.B.

E6/2 - AUDIO BOARD (2 XMTR NITE)

#	aı	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
1	C629 C632 C635 C640	CAPACITOR	8511017A07	.0068U	5Ø V	5%	MYLAR (RADIAL)
	C641 C644 C648 C651						
2	C631 C633 C637 C639	CAPACITOR	8511017A01	.001 U	50 V	5%	MYLAR (RADIAL)
	C643 C646 C647 C652						
3	C630 C634 C636 C638 C642 C642 C645 C649	CAPACITOR	Ø811Ø17A1Ø	.018 U	5Ø V	5%	MYLAR (RADIAL)
4	C604 C606 C618 C620	CAPACITOR	8S11017A06	.0047U	50 V	5%	MYLAR
5	C608 C611 C626 C654 C655 C656	CAPACITOR	21R40020S03	.1 U	50 V	20%	CERAMIC
	C658 C659 C661						
6	C627 C628	CAPACITOR	2311019A09	1MF	50 V	20%	LYTIC ALUM.
7	C605 C607 C619 C660	CAPACITOR	8S11017A08	.010	50 V	5%	MYLAR (RADIAL)

E6/2 - AUDIO BOARD (2 XMTR NITE)

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
8	C609 C610 C622 C623	CAPACITOR	BS11044A30	.33 U	50 V	5%	MYLAR
9	R611 R619 R622 R626 R689 R691	TRIMPOT	18PD1005	1K			CERMET 15 T
10		TRIMPOT	18ND1007	5K			CERMET 15 T
11	R662	TRIMPOT	18ND1013	100K			CERMET 15 T
12	R655 R604A /B R604C	TRIMPOT	18ND1008	2-100K			2 SECTION CERMET
13	/D R602A /B R602C /D	TRIMPOT	18ND1009	1K/1K ~			2 SECTION CERMET
14			18ND1010	50K/5H	(2 SECTION CERMET
15		DIODE	48-02054A0 0				SIGNAL ITT 1N 4148
16	Q6Ø1	TRANSISTOR	48R00869570				NPN 2N3904
17		SWITCH	40ND1017				TOGGLE BRD MNT SPDT
	5603 5604 5605 5606 5607						
18	3	CAP	38ND1006				BUTTON, WHITE BUTTON, RED
19 20		CAP CONNECTOR	38ND1005 09ND1010				10 PIN

E6/2 – AUDIO BOARD (2 XMTR NITE)

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
21	U604	IC	51ND1004				OPT. COUPLER V3F885
23	5608	CONNECTOR SWITCH	Ø9N1Ø11 4ØPD1Ø16				6 PIN DIP 16 POS
24	S609 K1	RELAY	80PD1001	8PDT	24V		MAGNCRFT W67TCSX-18
25	U601 U602 U603	IC	51ND1002				OP AMP QUAD LF347BN
	U6Ø6 U6Ø7		>				
26 27	R603	PIN RESISTOR	39ND1006 6S11009C17	47	1/4 W	5%	FCF VECTOR K24C
28	R612 R658 R661 R690 R692	RESISTOR	6S11009C49	i K	1/4 W	5%	FCF
29	R623 R624	RESISTOR	6511049894	1 K	1/4·W	1%	FMF 100 PPM
30	R610 R617	RESISTOR	6511009082	24 K	1/4 W	5%	FCF
31	R6Ø8 R615 R654	RESISTOR	6511009073	10 K	1/4 W	5%	FCF
32	R609 R616	RESISTOR	6511009050	1.1 K	1/4 W	5%	FCF
33	R605 R606 R613 R614 R651 R652 R653	RESISTOR	6511009C80	20 K	1/4 W	5%	FCF
34	R664 R665	RESISTOR	6511009046	750	1/4 W	5%	FCF
35	R656	RESISTOR	6511009D12	390 K	1/4 W	5%	FCF

E6/2 - AUDIO BOARD (2 XMTR NITE)

#	ID	NAME	PART #	VALUE	W/V TOL	DESCRIPTION
36	D	RESISTOR	6S11009C86	36 K	1/4 W 5%	FCF
37	R657	RESISTOR	6511009D20	820 K	1/4 W 5%	FCF
38	R660	RESISTOR	6S11009D16	560 K	1/4 W 5%	FCF
39	R659	RESISTOR	6511009061	3.3 K	1/4 W 5%	FCF
40	R663	RESISTOR	6S11049B44	3Ø1	1/4 W 1%	FMF 100 PPM
	R618 R621 R625 R627					
41	R669 R670	RESISTOR	6S11049B56	402	1/4 W 1%	FMF 100 PPM
	R671 R681 R682 R683					
42	R672 R673	RESISTOR	6S11Ø49B31	221	1/4 W 1%	FMF 100 PPM
	R674 R684 R685 R686					
43	R666 R667 R668	RESISTOR	6511049885	806	1/4 W 1%	FMF 100 PPM
	R678 R679 R780	••				
44	R675	RESISTOR	6511Ø49A97	100	1/4 W 1%	FMF 100 PPM
	R676 R677 R687 R688 R693					
45	•	P.C. BOARD	84AW1006-2E			DUAL AUDIO PROCESSO
46		CAPACITOR	8-82096J15	2.2 U	250 V 10%	MYLAR
	C612 C613 C624 C625					
47		DIODE	48ND1007		400V	RECTIFIER 1N4004,1A
48	3	SOCKET	Ø9PD1009		RELAY	MAGNACRAFT 70-310

E8 - BULK DELAY BOARD

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
1	R751 TO R774	RESISTOR	6811049894	1 K	1/4 W	1%.	FMF 100 PPM
2	C751 C754 C758 C762 C765 C769 C772	CAPACITOR	8S11Ø17AØ7	. 0068U	50 V	5%	MYLAR (RADIAL)
3	C776 C753 C756 C760 C764 C767 C771 C774 C778	CAPACITOR	8S11017A10	.018 U	5Ø V	5%	MYLAR (RADIAL)
4	C752 C755 C759 C763 C766 C770 C773	CAPACITOR	8511017A01	.001U	50∨	5%	MYLAR (RADIAL)
5	C757 C761 C768 C775	CAPACITOR	21R40020S03	.1 UF	50 V	20%	CERAMIC Z5U
6	U751 U752	IC	51ND1002				QUAD OP AMP LF347BN
7	S751 S752	SWITCH	40PD1006				DIP SPDT
8	E8	P.C. BOARD	84AW1008E				SINGLE BULK DELAY
9	Tens Ver"	PIN	39ND1006				TEST, VECTOR K24C

E9 — GROUP DELAY BOARD

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
1	R804 R805 R806 R816 R817	RESISTOR	6S11049B56	402	1/4 W	1%	FMF 100 PPM
2	R818 R801 R802 R803 R813 R814 R815	RESISTOR	6511049885	806	1/4 W	1%	FMF 100 PPM
3	R807 R808 R809 R819 R820 R821	RESISTOR	6S11049B31	221	1/4 W	1%	FMF 100 PPM
4	R810 R811 R812 R822 R823 R824	RESISTOR	6S11049A97	100	1/4 W	1%	FMF 100 PPM
5	E9	P.C. BOARD					DUAL BULK DELAY
6	R825 TO R872	RESISTOR	6511049B94	1 K	1/4 W	1%	FMF 100 PPM
7	C801 C805 C808 C812 C815 C819 C822 C826 C829 C833 C836 C840 C843 C847 C850 C857 C861 C864	CAPACITOR	8S11017A07	. 00681) 5@V	5%	MYLAR (RADIAL)

E9 - GROUP DELAY BOARD

#	ID	NAME	PART #	VALL	ΙE	W.	/V	TOL	DE	SCRIPTION
8	C803	CAPACITOR	8511017A01	. 001	U	50	٧	5%	MYLAR	(RADIAL)
	C807									
	C814 C817 C821									
	C824 C828									
	C831 C835									
	C838 C842									
	C845 C849		4,					-		
	C852 C856 C859									
	C863									
	C87Ø 873									
	877 880									
Э	884	CAPACITOR	8511017A10	.018	U	50	V	5%	MYLAR	(RADIAL)
	C802 C806									
	C809 C813									
	C816 C820 C823									•
	C827									
	C834 C837									
	C844									
	C848 C851									
	C855 C858 C862									
	C865 C869									
	872 876									
	879 883									

E9 - GROUP DELAY BOARD

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
10	C8Ø4	CAPACITOR	21R40020S03	.1 UF	50 V	20 %	Z5U CERAMIC
	C811 C818 C825						
	C839						
	C846 C853 C860						
	C867 C874 C881						•
11	U8Ø1 U8Ø2	IC	51ND1002				QUAD OP AMP LF347BN
	U803 U804 U8 0 5						
	U806						
12	5801 5802	SWITCH	40PD1016				DIP 16POS
13	\$803 \$804 \$805 \$806	SWITCH	40PD1006				DIP SPDT
14		PIN	39ND1 00 6				TEST, VECTOR K24C

E10 - AUDIO INPUT BOARD

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
1	C2 C4 C5 C7 C10 C12	CAPACITOR	8S11017A04	.0027	50 V	5%	MYLAR
2	C13 C15	CAPACITOR	8S11017A25	.0082	50 V		MYLAR
B _{ren}	C3 C6 C11 C14						
3	C1 C8 C9 C16	CAPACITOR	21R40020503	11 U	5Ø V	20%	CERAMIC
4	C17 C18	CAPACITOR	23511019A46	100 U	25 V	5%	ELECTROLYTIC
5	R8 R9 R19	RESISTOR	6811049A59	40.2	1/4 W	1%	FMF 100 PPM
6	R20 R7 R10 R18	RESISTOR	6511049802	110	1/4 W	1%	FMF 100 PPM
7	R6 R11 R17 R22	RESISTOR	6811049844	301	1/4 W	1%	FMF 100 PPM
8	R3 R14	RESISTOR	6S11049B73	604	1/4 W	1%	FMF 100 PPM
9	R1 R2 R4 R5	RESISTOR	6811049091	10 K	1/4 W	1%	FMF 100 PPM

E10 - AUDIO INPUT BOARD

#	ID	NAME	PART #	VALUE	W/V	TOL	DESCRIPTION
10	L1	INDUCTOR	24-82135608	620 uh			INDUCTOR
	L2 L3 L4 L5 L6 L7						
11	D1 D2 D3 D4 D5 D6 D7 D8	DIODE	48-82466H21	1N4004			DIODE 1N4004
12	U1 U2	IC, OP AMP	51ND1002				IC LF347BN
13	S1 S2	ATTENUATOR	40PD1018			a.	ATTENUATOR, DIP
14		P.C.B.	84AW1010E	E10			AUDIO INPUT BOARD
15 16 17 18		TEST PIN CONNECTOR SPACER SCREW	39ND1006 1-640388-6 8344 3-136138		SMITH		VECTOR K24C 16 PIN CONNECTOR 1/4 x .625, 6-32 6-32 x 3/8 PHL HEX

E26 – AUDIO AMPLIFIER

#	ID	NAME	PART #	VALUE	·W/V	TOL	DESCRIPTION
1	R1000	RESISTOR	6511049036	2.67К	1/4W	1%	FMF 100 PPM
2	R1001 R1002	TRIMPOT		5K	1/2 W	10%	WESTON 840P
3	R1003 R1004	RESISTOR	6511049091	1ØK	1/4W	1 %	FMF 100 PPM
4	R1005 R1006	RESISTOR	6S11049D57	47.5K	1/4W	1%	FMF 100 PPM
5	R1007		6S11Ø49EØ6	15 0 K	1/4W	1 %	FMF 100 PPM
6	R1009	RESISTOR	6S11049C28	2.21K	1/4W	1%	FMF 100 PPM
7	R1011 R1010	ıc	LM378N				DUAL AUDIO AMP
8	U1000 C1000	CAPACITOR	8511017A02	.0015	5 0 V	5%	POLYESTER
9	C1001 C1002	CAPACITOR	21R40020S03	. iuf	5 0 V	20%	MONOLITHIC
	C1003 C1004 C1005						
10	C1006 C1007	CAPACITOR	23D84908L01	2.20	507		ELECTROLYTIC RADIAL
11	C1008	CAPACITOR		22 0 U	35V		ELECTROLYTIC RADIAL
	C1009 C1010 C1011 C1012						
12 13		IC SOCKET HEADER	31N2918 102202-7	14 PIN AMP			VOLTREX SP-14-2G 10 PIN HEADER
14		PC BOARD	84AW1026E				AUDIØ AMP PCB

CHASSIS PARTS

PART NAME	PART #	ID	DESCRIPTION	QTY
PANEL FRONT	15PD1015	FRNT	MACHINED	1
P C BOARD	84AS1031E	FRNT	L E D TERM BRD.	ī
METER	72PD1003	FRNT	MODULATION	2
SWITCH ASSY	40AS1014A	FRNT	SWITCH & POT ASSY	i
SCREW	39140257	FRNT	6-32X5/16 PHFLHD BD	4
SWITCH	40PD1015	FRNT	ROCKER	1
JACK	09PD1004	FRNT	PHONE	i
PANEL, BACK	15PD1034	BACK	MACHINED	1
TERM STRIP	31PD1001	BACK	6 TERMINAL STRIP	1
TERM STRIP	31PD	BACK	8 TERMINAL STRIP	1
SCREW		BACK	6-32 x 1/2 BND PH BO	6
RECEPTACLE	09PD1008	BACK	BNC LONG W/HRDWR	4
SCREW	03PD1001	BACK	1/4-20X1 BRASS	1
NUT	02PD1001	BACK	1/4-20 BRASS HEX	2
WASHER, LOCK	Ø4ND1ØØ1	BACK	250 ID INTHT BRASS	1
WASHER, FLAT	45132218	BACK	250 ID BRASS	2
SCREW		BACK	6-32 x 1 SL	2
BUSHING	43PD1005	BACK	NYLON INSULATOR	8
PLUG	38PD1002	BACK	HOLE	2
SIDE PANEL	15PD1005A	RGHT	RIGHT-MACHINED PANEL	1
TRANSFORMER	25PD1010	RGHT RGHT		±
NUT		RGHT		LT 1
SCREW	040010000	RGHT	AUDIO AMP ASSEMBLY	1
P.C. BOARD	84AS1026E	RGHT	4-40 X 3/8 PHL HXD	3
SCREW	03ND1009	RGHT	1/4 LOCKWASHER	1
WASHER		RGHT	8-32 x 1/2	3
SCREW P.E. MODULE	28PD1001	RGHT		1
FUSE	CONDINGI	RGHT	0.5 AMP, 250 V SLO BLOW	_
HEAT SINK		RGHT	HEAT SINK	ī
HEAT COMPOUND	4.4	RGHT	HEAT TRANSFER COMPOUND	ø
SIDE PANEL	15PD1005B	LEFT	LEFT-MACHINED	1
SCREW	3-136138		6-32 x 3/8 PH HXHD	8
PC BOARD	84AS1010E	LEFT	AUDIO INPUT CARD	1
PC BOARD	84AS1005E	LEFT	RF AMP	1
BRACKET	07PD1002	SWCH	SWITCH BRACKET	1
SWITCH	40PD1012	SWCH	2-4PDT SWITCH	1
SWITCH	40PD1013	SWCH	2-4PDT SWITCH	1
POT	35405-1-201	SWCH	BOURNS 200 OHM POT	1
POT	35405-1-102	SWCH	BOURNS 1K POT	1
POT	35405-1-502	SWCH	BOURNS 5K POT	2
TERMINAL	1102-150519	SWCH	CONCORD TERMINAL	6
RESISTOR	6811009025	SWCH	FCF	. 2
RESISTOR	6S11049H15	SWCH	FMF 100 PPM	2
RESISTOR	6511049H36	SWCH	FMF 100 PPM	2
RESISTOR	6811049H66	SWCH	FMF 100 PPM	2 2
RESISTOR	6S11049H78	SWCH	FMF 100 PPM	8
WASHER	4 F F F 4 G G F	SWCH	LOCKWASHER, I.T.	2
RAIL	46PD1003	CDBS	GUNNELL FUIV	<u></u>

CHASSIS PARTS

PART NAME	PART #	ID	DESCRIPTION	QTY
CONNECTOR	09PD1001	CDBS	CARDEDGE, 44 POS	5
SCREW	3-138929	CDBS	4-40 X 5/8 PHIL HXHD	10
NUT	2-131435	CDBS	4-40 X 1/2 EXT LOCKWASHER	
BRACKET	07PD1001	CDBS	ANGLE, SLOTTED	2
SCREW	3-136138	CDBS	6-32 X 3/8 PLN HXHD	6
PIN	39PD1003	CDBS	CONNECTOR, POST	76
PLUG	39PD1001	CDBS	KEYING PLUG	6
PIN	39ND1ØØ5	CDBS	CONNECTOR, EYELET	2
TERM STRIP	31ND1003	CDBS	1 POS	2
NUT	25121841	CDBS	6-32 EXT LOCKWASHER	2
BUSS BAR	47PD1001	CDBS	SOLID BRASS	ī
TERMINAL	53555-1	CDBS	TOUNGE TERMINAL #2 STUD	4
BRACKET		FRAM	ANGLE BRACKET	2
RAIL		FRAM	PC BOARD GUIDE	2
GUIDE CLIP			PLASTIC CARD GUIDE	10
SCREW		FRAM		4
SCREW		FRAM	4-40 X 1/4 PHL RND HD	8
FRAME ASSY	Ø7AS1ØØ5	MAIN	CARD GUIDE FRAME ASSY	2
HARNESS ASSY	30WD1002	MAIN	HARNESS ASSEMBLY	1
NUT	2-135435	MAIN		4
SCREW	3-136138	MAIN	6-32 X 3/8 PHL HXHD	12
WASHER	**************************************	MAIN	LOCK WASHER, 1/4	4
FOAM PAD	75PD1001	MAIN	FOAM, GREY, ADH BACK	1
PLATE, NAME	33PD1001	MAIN	MODEL & SERIAL NO.	1
SCREW	03ND1007	MAIN	4-40 X 1/4 SLT PHD	ė
P C BOARD	84AS1001E	MAIN	ENCODER ASSEMBLY	1
P C BOARD	84AS1002E	MAIN	AUDIO EQUALIZER ASSEMBLY	ī
P C BOARD	84AS1003E	MAIN	SAMPLE XMITTER ASSEMBLY	ī
P C BOARD	84AS1004E	MAIN	POWER SUPPLY ASSEMBLY	1
P C BOARD	84AS1006E-2	MAIN	DUAL AUDIO PROCESSOR	ī
RT PNL ASSY	15AS1028	MAIN	RIGHT PANEL ASSY	1
LFT PNL ASSY	15AS1029	MAIN	LEFT PANEL ASSY	1
COVER	15PD1012	FINL	TOP COVER	1
COVER	15PD1004	FINL	BOTTOM COVER	1
SCREW	3-136138	FINL	6-32 X 3/8 PHIL HXHD	16
MAIN ASSY	27AS1002	FINL	MAIN ASSEMBLY	1
PLUG	38-83037M01	FINL	PLUG BUTTON	4
COVER STRIP	64C82966KØ1	FINL	MODULE STRIP	2
COVER	15C82967KØ1	FINL	MODULE	2
SCREW	38138971	FINL	4-40 X 1/2 PH FLHD	4
LID	15PD1020	FINL	TOP COVER	i
DECALS .	54PD1001	FINL	SWITCH POSITION LABELS	ē
LINE CORD	and the second second	FINL	3 PRONG LINE CORD	1

MONITOR PARTS LIST

ID	PART NO.	VALUE	EXP	TYPE	DESCRIPTION
M10 CIF	RCUIT BOARD				· •
C106	23-11019A46	100.000	o u	CAP	LYTIC 25V
C107	8C42208B18	.0470		CAP	MYLAR 50V 10%
	23-11019A46	100.000		CAP	LYTIC 25V
C109	21R40020S14	4700		CAP	CER. 50V 20% Z5U
	8511017A08	.0100		CAP	MET. POLY. 50V 5%
C111	21R40020S14	4700		CAP	CER. 50V 20% Z5U
					MET. POLY. 50V 5%
C112	8S11017A08	.0100		CAP	
C113	21R40020514	.4700		CAP	CER. 50V 20% 75U
C114	8S11017A08	.0100	_	CAP	MET. POLY. 50V 5%
C115	21R40020514	. 4700		CAP	CER. 50V 20% Z5U
C116	8S11017A08	.0100		CAP	MET. POLY. 50V 5%
C117	23D84538G02	4.7000		CAP	TANTALUM 20V 20%
C118	23D84908L01	2.2000		CAP	LYTIC 50V NONPOL
C119	21R40020S03	.1000		CAP	CER. 50V 20% Z5U
C120	21R40020S03	.1000		CAP	CER. 50V 20% Z5U
C121	21R40020S03	.1000	U	CAP	CER. 50V 20% Z5U
C122	8511017A08	.0100		CAP	MET. POLY. 50V 5%
C123	YA2A152K	.0015	U	CAP	MET. POLY. NICH.
C124	8S11017A08	.0100	U	CAP	MET. POLY. 50V 5%
C125	YA2A152K	.0015	U	CAP	MET. POLY. NICH.
C131	23-11019A46	100.000	o U	CAP	LYTIC 25V
C133	23D84538602	4.7000	U	CAP	TANTALUM 20V 20%
C134	23D84538602	4.7000	U	CAP	TANTALUM 20V 20%
C135	23D82747L19	10.0000	ับ	CAP	LYTIC 50V 20%
C136	23D84538G02	4.7000	U	CAP	TANTALUM 20V 20%
C137	23D84538G02	4.7000	U	CAP	TANTALUM 20V 20%
C138	21R40020S03	.1000		CAP	CER. 50V 20% Z5U
C139	21R40020S03	.1000		CAP	CER. 50V 20% Z5U
C141	21R40020S03	.1000		CAP	CER. 50V 20% Z5U
C142	23D82747L19	10.0000		CAP	LYTIC 50V 20%
C143	21R40020S14	.4700		CAP	CER. 50V 20% Z5U
C144	21R40020514	.4700		CAP	CER. 50V 20% Z5U
C145	21R40020S14	.4700		CAP	CER. 50V 20% Z5U
C146	21R40020S14	.4700		CAP	CER. 50V 20% Z5U
C147	21R40020S14	. 4700		CAP	CER. 50V 20% Z5U
C148	23-11019A46	100.000		CAP	LYTIC 25V
C149	21D83596E23	.0047		CAP	DISC 200V 10% Y5R
C150	21D83 5 96E23	.0047		CAP	DISC 200V 10% Y5R
C151	21D83596E23	.0047		CAP	DISC 200V 10% Y5R
C152	21D83596E23	.0047	U	CAP	DISC 200V 10% Y5R
D101	1N5229B			DIODE	ZENER 4.3V
D102	1N5229B			DIODE	ZENER 4.3V
D103	1N4148			DIODE	SIGNAL ITT
D104	1N4148			DIODE	SIGNAL ITT
D106	1N4148			DIODE	SIGNAL ITT
D107	1N4148			DIODE	SIGNAL ITT
D108	1N4148	•		DIODE	SIGNAL ITT
D109	1N4148			DIODE	SIGNAL ITT
D113	1N4148			DIODE	SIGNAL ITT
D114	1N4148			DIODE	SIGNAL ITT
R104	6S11049C45	3.32		RESIST	FMF 1/4W 1% 100PPM
R109	6S11049C67	5.62	·	RESIST	FMF 1/4W 1% 100PPM

ID	PART NO.	VALUE	EXP TYPE	DESCRIPTION				
M10 CI	M10 CIRCUIT BOARD							
R110	6511049091	10	k RES151	FMF 174W 1% 100PPM				
R111	6S11049C45	3.32	K RESIST	FMF 1/4W 1% 100PPM				
R112	6511049C60	4.75	K RESIST	FMF 1/4W 1% 100PPM				
R113	6S11049C60	4.75	K RESIST	FMF 1/4W 1% 100PPM				
R114	6S11049D33	26.7	K RESIST	FMF 1/4W 1% 100PPM				
R115	6S11049E39	332	K RESIST	FMF 1/4W 1% 100PPM				
R116	6S11049E39	332	K RESIST	FMF 1/4W 1% 100PPM				
R117	6S11049D33	26.7	K RESIST	FMF 1/4W 1% 100PPM				
R118	6S11049D09	15	K RESIST	FMF 1/4W 1% 100PPM				
R119	6S11049D25	22.1	K RESIST	FMF 1/4W 1% 100PPM				
R120	6S11049C67	5.62	K RESIST	FMF 1/4W 1% 100PPM				
R121	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM				
R122	6S11049C45	3.32	K RESIST	FMF 1/4W 1% 100PPM				
R123	6511049C60	4.75	K RESIST	FMF 1/4W 1% 100PPM				
R124	6S11047C60	4.75	K RESIST					
R125		26.7		FMF 1/4W 1% 100PPM				
	6S11049D33		K RESIST	FMF 1/4W 1% 100PPM				
R126	0011077207	332	K RESIST	FMF 1/4W 1% 100PPM				
R127	6S11049E39	332	K RESIST	FMF 1/4W 1% 100PPM				
R128	6S11049D33	26.7	K RESIST	FMF 1/4W 1% 100PPM				
R129	6511049D09	15	K RESIST	FMF 1/4W 1% 100PPM				
R130	6S11049D25	22.1	K RESIST	FMF 1/4W 1% 100PPM				
R131	6S11049C67	5.62	K RESIST	FMF 1/4W 1% 100PPM				
R132	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T				
R133	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T				
R134	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T				
R135	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T				
R136	6S11049C67	5.62	K RESIST	FMF 1/4W 1% 100PPM				
R137	6S11049C83	8.25	K RESIST	FMF 1/4W 1% 100PPM				
R138	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM				
R139	6S11049C99	12.1	K RESIST	FMF 1/4W 1% 100PPM				
R140	6S11049C83	8.25	K RESIST	FMF 1/4W 1% 100PPM				
R141	6S11049C52	3.92	K RESIST	FMF 1/4W 1% 100PPM				
R142	6S11049C83	8.25	K RESIST	FMF 1/4W 1% 100PPM				
R143	6S11049C83	8.25	K RESIST	FMF 1/4W 1% 100PPM				
R144	6S11049C83	8.25	K RESIST	FMF 1/4W 1% 100PPM				
R145	6S11049C83	8.25	K RESIST	FMF 1/4W 1% 100PPM				
R146	6S11049C83	8.25	K RESIST	FMF 1/4W 1% 100PPM				
R147	6S11049E39	332	K RESIST	FMF 1/4W 1% 100PPM				
R148	6511049 C 91	10	K RESIST	FMF 1/4W 1% 100PPM				
R149	6S11049D80	82.5	K RESIST	FMF 1/4W 1% 100PPM				
R150	6S11049D30	24.9	K RESIST	FMF 1/4W 1% 100PPM				
R151	6511049D30	24.9	K RESIST	FMF 1/4W 1% 100PPM				
R152	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM				
R153	6511049C91	10	K RESIST	FMF 1/4W 1% 100PPM				
R154	6S11049D25	22.1	K RESIST	FMF 1/4W 1% 100PPM				
R155	6S11049D42	33.2	K RESIST	FMF 1/4W 1% 100PPM				
R156	6S11049D42	33.2	K RESIST	FMF 1/4W 1% 100PPM				
R157	6511049D42	33.2	K RESIST	FMF 1/4W 1% 100PPM				
R158	6S11049D42	33.2	K RESIST	FMF 1/4W 1% 100PPM				
R159	6S11049D09	15	K RESIST	FMF 1/4W 1% 100PPM				
R160		825	RESIST	FMF 1/4W 1% 100PPM				
R161	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM				
R162	6S11049C75	6.81	K RESIST	FMF 1/4W 1% 100PPM				
R163	6511049C12	1.5	K RESIST	FMF 1/4W 1% 100PPM				

ID	PART NO.	VALUE	EXP TYPE	DESCRIPTION
M10 —	CIRCUIT BOARD			
R221 R224	6511049D88 6511049B70	100 562	K RESISI RESIST	- FMF 1/4W 1% 100FPM - FMF 1/4W 1% 100PPM
R225	3299Y-001-502	5.0000	K TRIMPOT	FMF 1/4W 1% 100PPM CERMET 25T
R227	6S11049D42	33.2	K RESIST	FMF 1/4W 1% 100PPM
R228	6511049C67	5.62	K RESIST	FMF 1/4W 1% 100PPM
R229	6S11049B94	1	K RESIST	FMF 1/4W 1% 100PPM
R230	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T
R231	6S10164B19	330	RESIST	FCF 1/2W 5%
R232	6S11049C83	8.25	K RESIST	FMF 1/4W 1% 100PPM
R233	6511049083	8.25	K RESIST	FMF 1/4W 1% 100PPM
R234	6S11049D96	121	K RESIST	FMF 1/4W 1% 100PPM
R235	6S11049D96	121	K RESIST	FMF 1/4W 1% 100PPM
R236	6S11049C75	6.81	K RESIST	FMF 1/4W 1% 100PPM
R237	6511049D49	39.2	K RESIST	FMF 1/4W 1% 100PPM
R238 R239	6S11049C99	12.1	K RESIST	FMF 1/4W 1% 100PPM
R240	6S11049C51 6S11049C99	1.21	K RESIST	FMF 1/4W 1% 100PPM
R240	6511049C99 6511049C91	12.1	K RESIST	FMF 1/4W 1% 100PPM
R242	3299Y-001-502	10 5.0000	K RESIST	FMF 1/4W 1% 100PPM
R243	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T
R244	6S11049C52	3.92	K TRIMPOT	CERMET 25T
R245	3299Y-001-253	25.0000	K RESIST K TRIMPOT	FMF 1/4W 1% 100PPM
R246	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T
R247	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T
R250	6S11049C67	5.62	K RESIST	CERMET 25T FMF 1/4W 1% 100PPM
R251	6S11049C45	3.32	K -RESIST	
R252	3299Y-001-502	5.0000	K TRIMPOT	FMF 1/4W 1% 100PPM CERMET 25T
R255	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T
R256	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T
R258	3299Y-001-501	500.0000	TRIMPOT	CERMET 25T
R259	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T
R260	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T
R261	6511049D42	33.2	K RESIST	FMF 1/4W 1% 100PPM
R263		10	K RESIST	FMF 1/4W 1% 100PPM
R264	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM
S101	40-83249K05		SWITCH	SPDT PC MT.RT.ANG.
U101	FL082CP		IC	OP. AMP. DUAL
U102	MC1595L		IC	ANALOG MULTIPLIER
U103	MC1595L		IC	ANALOG MULTIPLIER
U104	LF347BN		IC	OP. AMP. QUAD
U105	LF347BN		IC	OP. AMP. QUAD
U106	LF347BN		IC	OP. AMP. QUAD
U107	51R84320A35		IC	TIMER MC1455P1
U108 U109	51R84320A35 51R84320A35		IC	TIMER MC1455P1
U110	51R84320A35		IC	TIMER MC1455P1
U111	LF347BN		IC	TIMER MC1455P1
U112	LF347BN		IC IC	OP. AMP. QUAD
U113	LF347BN		IC	OP. AMP. QUAD
U114	51R84320A50		IC	OP. AMP. QUAD
	LF347BN		IC	PLL NE567V
U117			IC	OP. AMP. QUAD
	. The same of the de		16	COMPARATOR MC3302P

POLYPRO. 100V 1% NPO TOOK I'S NEO POLYPRO. 100V 1% NPO POLYPRO. 100V 1% NPO TANTALUM 20V 20% C318 23D84538G02 4.7000 U CAP TANTALUM 20V 20% U CAP LYTIC 50V 20% C319 10.0000 ULB1H100MAA LYTIC 50V 20% U CAP C320 ULB1H100MAA 10.0000 LYTIC 50V 20% C321 ULB1H100MAA 10.0000 U CAP LYTIC 50V 20% U CAP C322 ULB1H100MAA 10.0000 U CAP LYTIC 25V C323 23-11019A46 100.0000 CER. 50V 20% Z5U U CAP C324 21R40020S14 .4700 CER. 50V 20% Z5U C325 .0100 U CAP 21R40020S04 LYTIC 25V C326 23-11019A46 100.0000 U CAP U CAP CER. 50V 20% Z5U C327 21R40020S14 .4700 CER. 50V 20% Z5U U CAP C328 21R40020S04 .0100 U CAP LYTIC 25V C329 100.0000 23-11019A46 100.0000 LYTIC 25V U CAP C334 23-11019A46 CER. 50V 20% Z5U .1000 C335 21R40020S03 U CAP U CAP CER. 50V 20% Z5U C336 21R40020S03 . 1000 LYTIC 25V U CAP C337 23-11019A46 100.0000 LYTIC 25V U CAP 100.0000 C338 23-11019A46 LYTIC 25V C339 100,0000 U CAP 23-11019A46 MYLAR 50V 5% C340 8511017A14 .0470 U CAP MYLAR 50V 5% U CAP C341 8511017A14 .0470 100.0000 U CAP LYTIC 25V C342 23-11019A46 LYTIC 25V U CAP C343 23-11019A46 100.0000 DISC 200V 10% Y5R .0047 U CAP C344 21D83596E23 U CAP CER. 50V 20% Z5U C345 21R40020S14 .4700 CER. 50V 20% Z5U U CAP C346 21R40020514 . 4700 U CAP CER. 50V 20% Z5U .4700 C347 21R40020S14 50V 20% Z5U CAP CER. 21R40020514 . 4700 C348 DISC 200V 10% Y5R CAP .0047 C349 21D83596E23 CER. 50V 20% Z5U U CAP .47.00 C350 21R40020S14 CER. 50V 20% Z5U C351 21R40020S14 . 4700 U CAP DISC 500V 5% NPO P CAP 56.0000 C352 21D82133G35 DISC 500V 5% NPO 56.0000 P CAP C353 21D82133G35 MET.POLY. 63V 2% CAP IR67683K/J .068 U C354 U CAP MET.POLY. 63V 2% C355 IR67683K/J .068 MET. POLY. 50V 5% C356 .0010 U CAP 8S11017A01 MET. POLY. 50V 5% U CAP .0010 C357 8511017A01 CER. 50V 20% Z5U U CAP .1000 C358 21R40020503 CER. 50V 20% Z5U U CAP .1000 C359 21R40020S03 CER. 50V 20% Z5U U CAP 21R40020503 .1000 C360 CER. 50V 20% Z5U . 1000 U CAP 21R40020S03 C361 HOT CARRIER DIODE 48D84616A04 D301 HOT CARRIER DIODE 48D84616A04 D302 HOT CARRIER DIODE 48D84616A04 D304 HOT CARRIER DIODE 48D84616A04 D305 NPN 9570 TRANSIST 48R00869570 Q301 K RESIST FMF 1/4W 1% 100PPM 681 R318 6511049E69 FMF 1/4W 1% 100PPM 681 K RESIST R319 6511049E69 FMF 1/4W 1% 100PPM K RESIST 56.2 R320 6S11049D64 FMF 1/4W 1% 100PPM K RESIST 56.2 R321 6511049D64 FMF 1/4W 1% 100PPM K RESIST

56.2

6511049D64

R322

VALUE

M11 CIRCUIT BOARD

R323	6S11049D64	56.2	K RESIST	FMF 1/4W 1% 100PF	PM
R324	6S11049D64	56.2	K RESIST	FMF 1/4W 1% 100P	Mq
R325	3299Y-001-104	100.0000	K TRIMPOT	CERMET 25T	
R326	6 S 11049E30	267	K RESIST	FMF 1/4W 1% 100PI	
R343	6S11049A97	100	RESIST	FMF 1/4W 1% 100PI	
R356	6S11049E69	681	K RESIST	FMF 1/4W 1% 100PI	PM
R357	6S11049E69	681	K RESIST	FMF 1/4W 1% 100PI	PM
R358	6511049D64	56.2	K RESIST	FMF 1/4W 1% 100PI	PM
R359	6S11049D64	56.2	K RESIST	FMF 1/4W 1% 100PI	PM
R360	6S11049D64	56.2	K RESIST	FMF 1/4W 1% 100PI	PM
R361	6S11049D64	56.2	K RESIST	FMF 1/4W 1% 100PI	PM
R362	6S11049D64	56.2	K RESIST	FMF 1/4W 1% 100PI	PM
R363	3299Y-001-104	100.0000	K TRIMPOT	CERMET 25T	
R364	6511049E 30	267	K RESIST	FMF 1/4W 1% 100PI	PM
R377	6S11049D42	33.2	K RESIST	FMF 1/4W 1% 100PI	PM
R378	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PI	PM
R379	6511049C83	8.25	K RESIST	FMF 1/4W 1% 100Pf	PM
R380	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T	
R381	65110 49C8 3	8.25	K RESIST	FMF 1/4W 1% 100Pf	PM
R382	6511049C83	8.25	K RESIST	FMF 1/4W 1% 100PI	PM
R383	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T	
R384	6S11049C83	8.25	K RESIST	FMF 1/4W 1% 100FI	PM
R385	3 299 Y-001-502	5.0000	K TRIMPOT	CERMET 25T	
R386	6511049C28	2.21	K RESIST	FMF 1/4W 1% 100PI	PM
R387	3299Y-001-502	5.0000	K TRIMPOT	CERMET 25T	
R389	6S11049A97	100	RESIST	FMF 1/4W 1% 100PI	PM
R390	6S11049A97	100	RESIST	FMF 1/4W 1% 100PI	
R391	6S11049A97	100	RESIST	FMF 1/4W 1% 100PI	PM
R392	6S11049A97	100	RESIST	FMF 1/4W 1% 100PI	PM
R394	6511049A97	100	RESIST	FMF 1/4W 1% 100PI	PM
R3 95	6S11049B86	825	RESIST	FMF 1/4W 1% 100PI	
R396	6S11049B86	825	RESIST	FMF 1/4W 1% 100Pf	PM
R397	6S11049C12	1.5	K RESIST	FMF 1/4W 1% 100PF	PM .
R398	6S11049D96	121	K RESIST	FMF 1/4W 1% 100Pf	PM
R399	6S11049D42	33.2	K RESIST	FMF 1/4W 1% 100Pf	PM
R401	6511049B94	1	K RESIST	FMF 1/4W 1% 100PF	PM
R402	3299Y-001-501	500.0000	TRIMPOT	CERMET 25T	
R403	6511049D42	33.2	K RESIST	FMF 1/4W 1% 100PF	PM
R404	6S11049D96	121	K RESIST	FMF 1/4W 1% 100PF	
R405	6S11049E14	182	K RESIST	FMF 1/4W 1% 100PF	PM
R406	6510164B19	330	RESIST	FCF 1/2W 5%	
R407	6S10164B19	330	RESIST	FCF 1/2W 5%	
R408	6511049B86	825	RESIST	FMF 1/4W 1% 100PF	PM
R409	6S11049B86	825	RESIST	FMF 1/4W 1% 100PI	
R410	6511049D96	121	K RESIST	FMF 1/4W 1% 100PF	
R411	6S11049D42	33.2	K RESIST	FMF 1/4W 1% 100PI	
R412	6511049B94	1	K RESIST	FMF 1/4W 1% 100PF	
R413	3299Y-001-501	500.0000	TRIMPOT	CERMET 25T	
R414	6S11049D42	33.2	K RESIST	FMF 1/4W 1% 100PI	PM
R415	6S11049D96	121	K RESIST	FMF 1/4W 1% 100PI	
R416	6511049E14	182	K RESIST	FMF 1/4W 1% 100PI	
R417	6S10164B19	330	RESIST	FCF 1/2W 5%	• • •
R418	6510164B19	330	RESIST	FCF 1/2W 5%	
R419	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PF	DΜ
			is is a second and a second	111 1/ TW 1/4 100F1	17

ID	PART NO.	VALUE	EXP TYPE	DESCRIPTION
M11 CI	RCUIT BOARD	•		
R421	6511049C12	1.5	K RESIST	FMF 1/4W 1% 100PPM
R422	6S11049B15	150	RESIST	FMF 1/4W 1% 100PPM
R425	6S11049C67	5.62	K RESIST	FMF 1/4W 1% 100PPM
R426	6S11049C28	2.21	K RESIST	FMF 1/4W 1% 100PPM
R427	6511047C28	2.21	K RESIST	FMF 1/4W 1% 100PPM
	6511047C28	1.5	K RESIST	FMF 1/4W 1% 100PPM
R428	6S11047C12	1.5	K RESIST	FMF 1/4W 1% 100PPM
R429	6S11047C12	100	K RESIST	FMF 1/4W 1% 100PPM
R430	6511047D88	100	K RESIST	FMF 1/4W 1% 100PPM
R431	6S11047D66	4.64	K RESIST	FMF 1/4W 1% 100PPM
R432		100	RESIST	FMF 1/4W 1% 100PPM
R433	6S11049A97	100	RESIST	FMF 1/4W 1% 100PPM
R434	6511049A01		RESIST	FMF 1/4W 1% 100PPM
R435	6S11049A01	10	K RESIST	FMF 1/4W 1% 100PPM
R436	6S11049C59	4.64	RESIST	FMF 1/4W 1% 100PPM
R437	6S11049A97	100		
R438	6S11049C28	2.21	K RESIST	
R439	6S11049C60	4.75	K RESIST	FMF 1/4W 1% 100PPM
R440	6511049D88	100	K RESIST	FMF 1/4W 1% 100PPM
R441	6S00124B54	22	M RESIST	FMF 1/4W 5%
R442	6511049C56	4.32	k RESIST	FMF 1/4W 1% 100PPM
R443	6511049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R444	6S11049C75	6.81	K RESIST	FMF 1/4W 1% 100PPM
R445	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R446	6S11049C60	4.75	K RESIST	FMF 1/4W 1% 100PPM
R447	6511049D88	100	K RESIST	FMF 1/4W 1% 100PPM
R448	6S00124B54	22	M RESIST	FMF 1/4W 5%
R449	6S11049C56	4.32	K RESIST	FMF 1/4W 1% 100PPM
R450	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R451	6S11049C75	6.81	K RESIST	FMF 1/4W 1% 100PPM
R452	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R453	6511049C28	2.21	K RESIST	FMF 1/4W 1% 100PPM
R454	6S11049C28	2.21	K RESIST	FMF 1/4W 1% 100PPM
R455	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R456	6511049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R457	6S11049C91	10	k RESIST	FMF 1/4W 1% 100PPM
R458	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R461	6S11049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R462	6511049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R463	6S11049D25	22.1	K RESIST	FMF 1/4W 1% 100PPM
R464	6511049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R465	6S11049D42	33.2	K RESIST	FMF 1/4W 1% 100PPM
R466	6511049C91	10	K RESIST	FMF 1/4W 1% 100PPM
R467	6511049B94	1	K RESIST	FMF 1/4W 1% 100PPM
R468		332	RESIST	FMF 1/4W 1% 100PPM
R470	6511049B39	267	RESIST	FMF 1/4W 1% 100PPM
R470	6S11047B37	267	RESIST	FMF 1/4W 1% 100PPM
R471 R472		332	RESIST	FMF 1/4W 1% 100PPM
R47∠ R473	· ·	332	RESIST	FMF 1/4W 1% 100PPM
		2.21	K RESIST	FMF 1/4W 1% 100PPM
R474		2.21	K RESIST	FMF 1/4W 1% 100PPM
R475		1	K RESIST	FMF 1/4W 1% 100PPM
R476		1	K RESIST	FMF 1/4W 1% 100PPM
R477		2.21	K RESIST	FMF 1/4W 1% 100PPM
R478		2.21	K RESIST	FMF 1/4W 1% 100PPM
R479	6S11049C28	4202	1/ 1/20101	

ID	PART NO.	VALUE	EXP TYPE	DESCRIPTION

M11 CIRCUIT BOARD

3299Y-001-502	5.0000	K	TRIMPOT	CERMET 25T
3299Y-001-502	5.0000	K	TRIMPOT	CERMET 25T
M47A254			TRANSF	AUDIO 1500/600 OHM
M47A254			TRANSF	AUDIO 1500/600 DHM
LF347BN			IC	OP. AMP. QUAD
LF347BN			IC	OP. AMP. QUAD
TL082CP			IC	OP. AMP. DUAL
LF347BN			IC	OP. AMP. QUAD
LF347BN			IC	OP. AMP. QUAD
51R84320A51			IC	COMPARATOR MC3302P
51R84320A35			IC	TIMER MC1455P1
LF347BN			IC	OP. AMP. QUAD
LF347BN			IC	OP. AMP. QUAD
51R84320A35			IC	TIMER MC1455P1
	3299Y-001-502 M47A254 M47A254 LF347BN LF347BN TL082CP LF347BN LF347BN 51R84320A51 51R84320A35 LF347BN LF347BN	3299Y-001-502 5.0000 M47A254 M47A254 LF347BN LF347BN TL082CP LF347BN LF347BN 51R84320A51 51R84320A35 LF347BN LF347BN	3299Y-001-502 5.0000 K M47A254 M47A254 LF347BN LF347BN TL082CP LF347BN LF347BN 51R84320A51 51R84320A35 LF347BN LF347BN	3299Y-001-502 5.0000 K TRIMPOT M47A254 TRANSF M47A254 TRANSF LF347BN IC LF347BN IC LF347BN IC LF347BN IC 51R84320A51 IC 51R84320A35 IC LF347BN IC LF347BN IC LF347BN IC

M12 CIRCUIT BOARD

R804	6S11049C28	2.2100	K RESIST RESIST RESIST RESIST RESIST RESIST K TRIMPOT	FMF 1/4W 1% 100PPM
R806	6S11049B78	681.0000		FMF 1/4W 1% 100PPM
R808	6S11049B31	221.0000		FMF 1/4W 1% 100PPM
R810	6S11049AB1	68.1000		FMF 1/4W 1% 100PPM
R812	6S11049A34	22.1000		FMF 1/4W 1% 100PPM
R814	6S11049A01	10.0000		FMF 1/4W 1% 100PPM
R818	18D84944C12	5.0000		CARBON
5802	591C42-18A	5. 0000	SWITCH	PB 10 SECT SCHADOW R

M13 CIRCUIT BOARD

R803	6S11049C28	2.2100	K	RESIST	FMF 1/4W 1% 100PPM
R805	6S11049B78	681.0000		RESIST	FMF 1/4W 1% 100PPM
R807	6S11049B31	221.0000		RESIST	FMF 1/4W 1% 100PPM
R809	6S11049A81	68.1000		RESIST	FMF 1/4W 1% 100PPM
R811	6511049A34	22.1000		RESIST	FMF 1/4W 1% 100PPM
R813	6511049A01	10.0000		RESIST	FMF 1/4W 1% 100PPM
R817	18D84944C12	5.0000	K	TRIMPOT	CARBON
S801	591C42-18B			SWITCH	PB 10 SECT SCHADOW L

M26 CIRCUIT BOARD

C1000 YA2A152K	.0015	U CAP	METALIZED POL. NICH.
C1001 YA2A152K	.0015	U CAP	METALIZED POL. NICH.
C1002 21R40020S03	.1000	U CAP	CER. 50V 20% Z5U
C1003 21R40020S03	.1000	U CAP	CER. 50V 20% Z5U
C1004 21R40020S03	.1000	U CAP	CER. 50V 20% Z5U
C1005 21R40020S03	.1000	U CAP	CER. 50V 20% Z5U
C1006 23D84908L01	2.2000	U CAP	LYTIC 50V NONPOLARIZED
C1007 23D84908L01	2.2000	U CAP	LYTIC 50V NONPOLARIZED
C1008 ULBIV221M	220	H CAP	LYTIC 35V

ID	PART NO.	VALUE	EXP TYPE	DESCRIPTION
M26 CI	RCUIT BOARD			
C1010 C1011 C1012 R1000 R1001		220 220 220 220 26.7000 26.7000 5.0	U CAP U CAP U CAP U CAP K RESIST K RESIST K TRIMPOT	LYTIC 35V LYTIC 35V LYTIC 35V LYTIC 35V FCF 1/4W 1% 100PPM FCF 1/4W 1% 100PPM CERMET 1T
R1003 R1004 R1005 R1006 R1007 R1008 R1010 R1011		5.0 10.0000 47.5 47.5 150.000 150.000 2.21000 2.21000	K RESIST K RESIST K RESIST K RESIST K RESIST	CERMET 1T FCF 1/4W 1% 100PPM FCF 1/4W 1% 100PPM FMF 1/4W 1% 100PPM FMF 1/4W 1% 100PPM FCF 1/4W 1% 100PPM

M27 CIRCUIT BOARD

*SPECIAL PARTS USED ON SOME BOARDS

:				·
*C732	*SXK333	330	P CAP	POLY.STY. 33V 5% MALLORY
*L705	*82-0522	;	TRANSF	RF IF3 10MM
*R739		182	RESIST	FMF 1/4W 1% 100PPM
*X701	*48PD1003		XTAL	9.216 MHZ (CINOX)
C701	SXK333	330	P CAP	POLY.STY. 33V 5% MALLORY
C702	21R40020S03	.1000	U CAP	CER. 50V 20% Z5U
C703	8511017A01	.0010	U CAP	MET. POLY. 50V 5%
C704	8S11017A01	.0010	U CAP	MET. POLY. 50V 5%
C705	21R40020S03	.1000	U CAP	CER. 50V 20% Z5U
C706	SXK333	330	P CAP	POLY.STY. 33V 5% MALLORY
C707	ULB1V100MA	10	U CAP	LYTIC 35V
C708	21R40020503	.1000	U CAP	CER. 50V 20% 25U
C709	10P/5NPD	10	P CAP	CER EDPT 3X4(5% NPO)
C710	10-S-T-06	30.0000	P TRIMCAP	CERAMIC 5/30 PFD N750
C711	68PN1500	68	P CAP	CER EDPT 3X4(5% N1500)
C712	ULB1V100MA	10	U CAP	LYTIC 35V
C713	21R40020S03	.1000	U CAP	CER. 50V 20% Z5U
C714	8S11017A08	0100	U CAP	MET. POLY. 50V 5%
C715	8S11017A08	.0100	U CAP	MET. POLY. 50V 5%
C716	47P/5N1500	47	P CAP	CER EDPT 3X4(5% N1500)
C717	8511017A08	.0100	U CAP	MET. POLY. 50V 5%
C718	21R40020S03	.1000	U CAP	CER. 50V 20% Z5U
C719	8S11017A08	.0100	U CAP	MET. POLY. 50V 5%
C720	8S11017A11	.0220	U CAP	MET. POLY. 50V 5%
C721	RPE113X7R684K5	84. VO	U CAP	CER 50V X7R
C722	23-11019A46	100.0000	U CAP	LYTIC 25V
C723	ULB1V100MA	10	U CAP	LYTIC 35V
C724	21R40020S03	.1000	U CAP	CER. 50V 20% Z5U
C725		.1000	U CAP	CER. 50V 20% 75U
C726	8S11017A13	.0330	U CAP	MET. POLY. 50V 5%
C727		220.0000	P CAP	DISC 1KV 10% Z5F
U,,				

M27 CIRCUIT BOARD

*SPECIAL PARTS USED ON SOME BOARDS

					men
C728	21R40020S03	.1000		CAP	CER. 50V 20% Z5U
C729	21R40020S03	.1000		CAP	CER. 50V 20% Z5U
€730	21R40020S03	.1000		CAP	CER. 50V 20% Z5U
C731	15P/5N750	15	P	CAP	CER EDPT 3X4(5% N750)
D701	1N4148			DIODE	SIGNAL ITT
D702	1N4148			DIODE	SIGNAL ITT
D703	1N4148			DIODE	SIGNAL ITT
D704	MVAM109			DIODE	VARACTOR
D705	1N4148			DIODE	SIGNAL ITT
D706	1N4148			DIODE	SIGNAL ITT
L701	82-0520			TRANSF	RF IF1 10MM
L702	T2.5-6T			TRANSF	RF BROAD BAND
L703	82-0521			TRANSF	RF IF2 10MM
L703	24PD1001			TRANSF	RF VCO 840709 GRY
Q701	48R00869878				FET 9878
0702	48R00869571				PNP 9571
Q703	48R00869570				NPN 9570
Q703	48R00869570				NPN 9570
	6S11049B55	392		RESIST	FMF 1/4W 1% 100PPM
R701		562	v	RESIST	FMF 1/4W 1% 100PPM
R702	6511049E61	825		RESIST	FMF 1/4W 1% 100PPM
R703	6511049B86				FMF 1/4W 1% 100PPM
R704	6S11049A34	22.1		RESIST	
R705	6511049A34	22.1		RESIST	
R706	6S11049B48	332		RESIST	FMF 1/4W 1% 100PPM
R707	6511049A81	68.1		RESIST	FMF 1/4W 1% 100PPM
R708	6511049A81	68.1		RESIST	FMF 1/4W 1% 100PPM
R709	6S11049B94	1.		RESIST	FMF 1/4W 1% 100PPM
R710	6511049C83	8.25	K	RESIST	FMF 1/4W 1% 100PPM
R711	6511049A97	100		RESIST	FMF 1/4W 1% 100PPM
R712	6S11049B59	432		RESIST	FMF 1/4W 1% 100PPM
R713	6S11049A97	100		RESIST	FMF 1/4W 1% 100PPM
R714	6S11049C37	2.74		RESIST	FMF 1/4W 1% 100PPM
R715	6511049C28	2.21	K	RESIST	FMF 1/4W 1% 100PPM
R716	6S11049B0B	127		RESIST	FMF 1/4W 1% 100PPM
R717	6S11049B55	392		RESIST	FMF 1/4W 1% 100PPM
R718	6S11049D88	100	k.	RESIST	FMF 1/4W 1% 100PPM
R719	6S11049C91	10	K	RESIST	FMF 1/4W 1% 100PPM
R720	6S11049C15	1.62	K	RESIST	FMF 1/4W 1% 100PPM
R721	6S11049B78	681		RESIST	FMF 1/4W 1% 100PPM
R722	6511049B0B	127		RESIST	FMF 1/4W 1% 100PPM
R723	6S11049B48	332		RESIST	FMF 1/4W 1% 100PPM
R724	6S11049C49	3.65	K	RESIST	FMF 1/4W 1% 100PPM
R725	6S11049B48	332		RESIST	FMF 1/4W 1% 100PPM
R726	6S11049A97	100		RESIST	FMF 1/4W 1% 100PPM
R727	6511047A01	10		RESIST	FMF 1/4W 1% 100PPM
R728	6S11049B31	221		RESIST	FMF 1/4W 1% 100PPM
R729	6S11047D31	33.2	K	RESIST	FMF 1/4W 1% 100PPM
R730	6S11047D42	3.32		RESIST	FMF 1/4W 1% 100PPM
R731	6S11047643	100	٠,٠	RESIST	FMF 1/4W 1% 100PPM
R732	6S11047H77	182		RESIST	FMF 1/4W 1% 100PPM
R732	6511047B23	681		RESIST	FMF 1/4W 1% 100PPM
	6511047876 6511049866	47.5		RESIST	FMF 1/4W 1% 100PPM
R734	6511047H66 6511049C51	1.21	k	RESIST	FMF 1/4W 1% 100PPM
R735	0211042691	4. 3		1155401	27 177 278 2001111

M27 CIRCUIT BOARD

*SPECIAL PARTS USED ON SOME BOARDS

R736 6S11049B7B 681	RESIST	FMF 1/4W 1% 100PPM
R737 6S11049A34 22.1	RESIST	FMF 1/4W 1% 100PPM
R738 6811049C45 3.32	K RESIST	FMF 1/4W 1% 100PPM
5701 76SB08S	SWITCH	8PST DIP
U701 MC1596L	IC IC	BALANCED MODULATOR
## · # =	ic	TRANSISTOR ARRAY
U703 MC145151	ic	FREQ.SYNTH.
U704 MC10131L	ic	D FF DUAL
X701 48PD1002-X2	XTAL	10.24 MHZ (CINOX)

M41 CIRCUIT BOARD

M41 CII	RCUIT BOARD			·
C501	500R23N101KP4	100	P CAP	CHIP 10% 500V NPO
C502	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C503	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C504	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C508	500R23N101KP4	100	P CAP	CHIP 10% 500V NPO
C510	8511017A14	.047	U CAP	MET. POLY. 50V 5%
C512	C5A223G	.022	U CAP	MET.POLYCAR 2% 30V
C513	*	.001	U CAP	CHIP 10% 500V NPD
C514	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C515	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C516	8S11017A17	.1000	U CAP	MET. POLY. 50V 5%
C517	8S11017A17	.1000	U CAP	MET. POLY. 50V 5%
C518	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C519	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C524	8-10212A10	1.0000	U CAP	100V 10%
C525	8-10299B13	6.8000	U CAP	100V 10%
C527	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C530	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C533	8511017A14	.047	U CAP	MET. POLY. 50V 5%
C534	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C539	500R16N300JP4	30	P CAP	CHIP 10% 500V NPO
C540	8511017A14	.047	U CAP	MET. POLY. 50V 5%
C541	500R16N300JP4	30	P CAP	CHIP 10% 500V NPO
C542	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C548	21D82133G03	100	P CAP	DISC 500V 5% N750
C549	21D82133G03	100	P CAP	DISC 500V 5% N750
C553	KP1838	.0047	U CAP	POLYPRO. 63V 2.5%
C554	KP1838	.0047	U CAP	POLYPRO. 63V 2.5%
C555	KP1838	.0047	U CAP	POLYPRO. 63V 2.5%
C556	KP1838	.0047	U CAP	POLYPRO. 63V 2.5%
C557	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C559	8S11017A10	.0100	U CAP	MET. POLY. 50V 5% MET. POLY. 50V 5%
C560	8511017A14	.047	U CAP	MET. POLY. 50V 5% DISC 500V 5% NPO
C561	21D82133G35	56	P CAP	DISC 500V 5% N750
C562	21082133603	100	P CAP	
C564	*	.0047	U CAP U CAP	POLYPRO. 63V 2.5% POLYPRO. 63V 2.5%
C565	KP1838	.0047		MET. POLY. 50V 5%
C566	8511017A14	.047	U CAP U CAP	MET. POLY. 50V 3%
C568	8511017A14	.047	u car	HEI. FULT. JOV JA

ID	PART NO.	VALUE	EXP TYPE	DESCRIPTION
				*

M41 CIRCUIT BOARD

C570	8511017A14	.047	U CAP	MET. POLY. 50V 5%
C571	8511017A14	. 047	U CAP	MET. POLY. 50V 5%
C572	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C573	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C581	8511017A14	.047	U CAP	MET. POLY. 50V 5%
C582	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C583	8511017A14	.047	U CAP	MET. POLY. 50V 5%
C584	500R16N300JP4	30	P CAP	CHIP 10% 500V NPO
C585	500R16N300JP4	30	P CAP	CHIP 10% 500V NPO
C586	21D83162H33	.0018	U CAP	CERAMIC 50V 5% NPO
C587	SXK333	330	U CAP	POLY.STY. 33V 5%
C588	8S11017A01	.0010	U CAP	MET. POLY. 50V 5%
C590	21R40020S14	. 4700	U CAP	CER. 50V 20% Z5U
C591	21D82133G83	33	P CAP	DISC 500V 5% N150
C592	8511017A14	.047	U CAP	MET. POLY. 50V 5%
C593	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C594	500R23N101KP4	100	P CAP	CHIP 10% 500V NPO
C601	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C602	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V
C603	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C604	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C605	A12A222FSW	.0022	U CAP	MET. POLYCAR 30V 1%
C606	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C607	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C608	A12A222FSW	.0022	U CAP	MET.POLYCAR 30V 1%
C609	8511017A11	.0220	U CAP	MET. POLY. 50V 5%
C610	8511017A14	.047	U CAP	MET. POLY. 50V 5%
C611	8S11017A14	.047	U CAP	MET. POLY. 50V 5%
C612	8511017A14	.047	U CAP	MET. POLY. 50V 5%
C613	C5A223G	.022	U CAP	MET POLYCAR 2% 30V
C614	C5A223G	.022	U CAP	MET POLYCAR 2% 30V
C615	ULB1H3R3M	3.3	U CAP	LYTIC 50V 20%
C616	ULB1H3R3M	3.3	U CAP	LYTIC 50V 20%
C617	10P/5NP0	10	P CAP	CER EDPT 3X4(5% N750)
C618	10P/5NPO	10	P CAP	CER EDPT 3X4(5% N750)
C619	C5A223G	.022	U CAP	MET POLYCAR 2% 30V
C620	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C621	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C622	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C623	500R23N101KP4	100	P CAP	CHIP 10% 500V NPB
C624	500R23N101KP4	100	P CAP	CHIP 10% 500V NPO
C625	500R16N300JP4	30	P CAP	CHIP 10% 500V NPO
C626	500R16N300JP4	30	P CAP	CHIP 10% 500V NPB
C627	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C628	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C629	500R23N101KP4	100	P CAP	CHIP 10% 500V NPB
C630	500R23N101KP4	100	P CAP	
C631	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C632	8S11017A14	.047		CHIP 10% 500V NPB
C633	500R23N101KP4	100	U CAP	MET. POLY. 50V 5%
			P CAP	CHIP 10% 500V NPD
C634	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C635	500R23N101KP4	100	P CAP	CHIP 10% 500V NPO
C636	500R23N101KP4	100	P CAP	CHIP 10% 500V NPD
C637	500R23N101KP4	100	P CAP	CHIP 10% 500V NPO

	ID	PART NO.	VALUE	EXP	TYPE	DESCRIPTION
	M41 CIF	RCUIT BOARD	•			
	C638	8S11017A14	.047	П	CAP	MET. POLY. 50V 5%
	C639	8511017A14	.047		CAP	MET. POLY. 50V 5%
		8511017A14	.047		CAP	MET. POLY. 50V 5%
	C640				CAP	CHIP 10% 500V NPO
	C641	**	68	r	DIODE	SIGNAL ITT
		1N4148				VARACTOR MV109
	D503	48-82190H32			DIODE	SIGNAL ITT
	D504	1N4148			DIODE	SIGNAL ITT
		1N4148			DIODE	SIGNAL ITT
•	D506	1N4148			DIODE	
	D507	1N4148			DIODE	SIGNAL ITT
	D508	1N4148			DIÓDE	SIGNAL ITT
	E501	741A7			RELAY	REED GORDOS
	L501	82-0523			TRANSF	RF IF4 10MM
	L502	82-0522			TRANSF	RF IF3 10MM
	L503	83-0638			TRANSF	RF TRAP 900KHZ
	L504	83-0638			TRANSF	RF TRAP 900KHZ
	L505	830638			TRANSF	RF TRAP 900KHZ
	L506	84-0726			COIL	RF TRAP 1800KHZ
	Q 501	48R00869571				PNP 9571
	Q502	48R00869571				PNP 9571
	Q503	48R00869570				NPN 9570
	Q504	48R00869570				NPN 9570
	Q509	48R00869878			TRANSIST	FET 9878
	Q510	48R00869570			TRANSIST	NPN 9570
	Q511	48R00869571			TRANSIST	PNP 9571
	Q512	48R00869571				PNP 9571
	Q513	48R00869878			TRANSIST	FET 9878
	Q514	48R00869570			TRANSIST	NPN 9570
	R501	3299Y-001-103	10	K	TRIMPOT	CERMET 25T
	R502	3299Y-001-504	500		TRIMPOT	CERMET 25T
	R503	3299Y-001-101	100	•	TRIMPOT	CERMET 25T
	R504	3299Y-001-101	100		TRIMPOT	CERMET 25T
	R505	32994-001-501	500.000	Ó	TRIMPOT	CERMET 25T
	R509	6S11049B39	267	•	RESIST	FMF 1/4W 1% 100PPM
	R510	6S11049B39	267		RESIST	FMF 1/4W 1% 100PPM
	R511	6S11047B63	475		RESIST	FMF 1/4W 1% 100PPM
	R512	6S11047B33	2.74	· k	RESIST	FMF 1/4W 1% 100PPM
	R513	6S11047E37	475	•	RESIST	FMF 1/4W 1% 100PPM
	R514	6511049C37	2.74	· k	RESIST	FMF 1/4W 1% 100PPM
	R515	6S11047C37	2.43		RESIST	FMF 1/4W 1% 100PPM
	R516	6S11047C32	2.43	k	RESIST	FMF 1/4W 1% 100PPM
		6S11047C52	3.92		RESIST	FMF 1/4W 1% 100PPM
	R517	6511047C32	3.01		RESIST	FMF 1/4W 1% 100PPM
	R518	6S11047C42	1		RESIST	FMF 1/4W 1% 100PPM
	R519	6S11047B74	1		RESIST	FMF 1/4W 1% 100PPM
	R520	6S11049C42	3.01		RESIST	FMF 1/4W 1% 100PPM
	R521				RESIST	FMF 1/4W 1% 100PPM
	R522	6S11049C12	1.5		RESIST	FMF 1/4W 1% 100PPM
	R523	6511049C12	1.5		RESIST	FMF 1/4W 1% 100PPM
	R524	6511049C47	3.48		KESIST	FMF 1/4W 1% 100PPM
	R525		1.5		K RESIST	FMF 1/4W 1% 100PPM
	R526		1		K RESIST	FMF 1/4W 1% 100PPM
	R527		1.21		K RESIST	FMF 1/4W 1% 100PPM
	R528		2.74			FMF 1/4W 1% 100PPM
	R529		2.74		K RESIST	FMF 1/4W 1% 100PPM
	R530	6S11049A97	100		RESIST	118 17 TW 1/8 1001111

VALUE

M41 CIRCUIT BOARD

R531	6S11049B82	750	RESIST F	FMF 1/4W 1% 100PPM
R532	6S11049E85	1 .	M RESIST F	MF 1/4W 1% 100PPM
R533	6S11049C20	1.82	K RESIST F	FMF 1/4W 1% 100PPM
R534	6S11049B78	681	RESIST F	FMF 1/4W 1% 100PPM
R535	6S11049C47	3.48	K RESIST F	FMF 1/4W 1% 100PPM
R536	6S11049C12	1.5	K RESIST F	FMF 1/4W 1% 100PPM
R537	6511049C03	1.21	K RESIST F	MF 1/4W 1% 100PPM
R538	6S11049C45	3.32	K RESIST F	MF 1/4W 1% 100PPM
R539	6511049B94	1	K RESIST F	FMF 1/4W 1% 100PPM
R540	651104 9 C63	5.11	K RESIST F	MF 1/4W 1% 100PPM
R541	6511049C03	1.21	K RESIST F	FMF 1/4W 1% 100PPM
R542	6511049 C 32	2.43		FMF 1/4W 1% 100PPM
R543	6S11049C32	2.43	K RESIST F	FMF 1/4W 1% 100PPM
R544	6S11049B63	475	RESIST F	MF 1/4W 1% 100PPM
R545	6511049B63	475	RESIST F	MF 1/4W 1% 100PPM
R546	6S11049C71	6.19	K RESIST F	FMF 1/4W 1% 100PPM
R547	6S11049C37	2.74	K RESIST F	MF 1/4W 1% 100PPM
R548	6S11049C37	2.74	K RESIST F	MF 1/4W 1% 100PPM
R549	6S11049C60	4.75	K RESIST F	MF 1/4W 1% 100PPM
R550	6S11049C36	2.67	K RESIST F	MF 1/4W 1% 100PPM
R552	6S11049C36	2.67	K RESIST P	FMF 1/4W 1% 100PPM
R553	6S11049C15	1.62	K RESIST F	MF 1/4W 1% 100PPM
R555	6S11049C37	2.74	K RESIST F	FMF 1/4W 1% 100PPM
R556	6S11049C37	2.74	K RESIST F	FMF 1/4W 1% 100PPM
R557	6511049C85	8.66	K RESIST F	MF 1/4W 1% 100PPM
R558	6S11049D50	40.2	K RESIST F	MF 1/4W 1% 100PPM
R559	6S11049D53	43.2	K RESIST F	MF 1/4W 1% 100PPM
R560	6S11049C97	11.5	K RESIST F	MF 1/4W 1% 100PPM
R561	651104 9 B78	681	RESIST F	MF 1/4W 1% 100PPM
R562	6511049D80	82.5	K RESIST F	MF 1/4W 1% 100PPM
R563	6S10164K42	2.2000	M RESIST F	FCF 1/4W 5%
R564	6S11049C37	2.74	K RESIST F	MF 1/4W 1% 100PPM
R565	6511049C03	1.21	K RESIST F	MF 1/4W 1% 100PPM
R566	6S11049A58	39.2	RESIST F	MF 1/4W 1% 100PPM
R567	6511049A58	39.2	RESIST F	MF 1/4W 1% 100PPM
R568	6511049C45	3.32	K RESIST F	MF 1/4W 1% 100PPM
R569	**	1.21	M RESIST F	MF 1/4W 1% 100PPM
R570	6511049D68	61.9	K RESIST F	MF 1/4W 1% 100PPM
R571	3299Y-001-502	5.0000	K TRIMPOT C	CERMET 25T
R572	6S11049C45	3.32	K RESIST F	MF 1/4W 1% 100PPM
R573	6S11049B63	475	K RESIST F	FMF 1/4W 1% 100PPM
R574	6S11049E30	267	K RESIST F	FMF 1/4W 1% 100PPM
R575	6S11049D53	43.2		FMF 1/4W 1% 100PPM
R576	6511049C97	11.5		FMF 1/4W 1% 100PPM
R577	6S11049C85	8.66		FMF 1/4W 1% 100PPM
R578	6S11049D50	40.2		FMF 1/4W 1% 100PPM
R579	6S11049D53	43.2		FMF 1/4W 1% 100PPM
R580	6511049C37	2.74		FMF 1/4W 1% 100PPM
R581	6S11049C37	2.74		FMF 1/4W 1% 100PPM
R582	6S11049D53	43.2		FMF 1/4W 1% 100PPM
R583	6511049D50	40.2	•	FMF 1/4W 1% 100PPM
R584	6511049C85	8.66		FMF 1/4W 1% 100PPM
R585	6S11049C97	11.5		FMF 1/4W 1% 100PPM

RESIST

6S11049A81

R648

68.1

FMF

100PPM

XTAL

3.6MHZ

X501

84PD1004

				The state of the s
ID	PART NO.	VALUE EX	(P TYPE	DESCRIPTION
M42 CIF	RCUIT BOARD			
F802	279.250	1/4	FUSE	SUBMIN RAD LEAD LITTLEFUSE
F803	279.062	1/16	FUSE	SUBMIN RAD LEAD LITTLEFUSE
R839	GB1515	150	RESIST	FC 1W 5%
R840.	GB1515	150	RESIST	FC 1W 5%
R841	GB1515	150	RESIST	FC 1W 5% FC 1W 5%
R842 R843	GB1515 GB1515	150 150	RESIST RESIST	FC 1W 5% FC 1W 5%
R844	HB1315	130	RESIST	FC 2W 5%
	HB1015	100	RESIST	FC 2W 5%
R846	HB1015	100	RESIST	FC 2W 5%
R847	HB1015	100	RESIST	FC 2W 5%
R848	HB1015	100	RESIST	FC 2W 5%:
R849	GB2015	200	RESIST	FC 1W 5%
R850	HB1315	130	RESIST	FC 2W 5%
5803	PA-7007		SWITCH	WAFER SP & POSITIONS
		4 4		* * * * * * * * * * * * * * * * * * *
M43 CIF	RCUIT BOARD			
C900	23C05253D01	2000.0000		LYTIC 50V
C901	23C05253D01	2000.0000	U CAP	LYTIC 50V
C902	8511017A17	.1000	U CAP	METALIZED POLY. 50V 5%
C904	8511017A17	.1000	U CAP	METALIZED POLY. 50V 5%
C906	23C05253D01	2000.0000	U CAP	METALIZED POLY. 50V 5%
C908 C909	8S11017A17 23D84669A27	.1000 2.0000	U CAP	LYTIC 25V +150-10%
C910	23D84669A27	2.0000	U CAP	LYTIC 25V +150-10%
D900	IN4720	2.0000	DIODE	RECTIFIER POWER
D901	IN4720		DIODE	RECTIFIER POWER
D902	IN4720		DIODE	RECTIFIER POWER
D903	IN4720		DIODE	RECTIFIER POWER
D904	IN4720		DIODE	RECTIFIER POWER RECTIFIER POWER
D905 D906	IN4720 IN5338B		DIODE	ZENER 5.1V
D908	IN4002		DIODE	RECTIFIER 100V
U900	MC7815CT		IC	REGULATOR 15V
U901	MC7805CT		IC	REGULATOR 5V
U902	MC7915CT		IC	REGULATOR -15
	अ 			
LEFT 1	THUMB WHEEL SWIT	СН		
R819	6S11049B94	1.0000	K RESIST	FMF 1/4W 1% 100PPM
R820	6S11047B77	100.0000	RESIST	FMF 1/4W 1% 100PPM
R821	6S11049A97	100.0000	RESIST	FMF 1/4W 1% 100PPM
R822	6S11049B56	402.0000	RESIST	FMF 1/4W 1% 100PPM
R823	6S11049B44	301.0000	RESIST	FMF 1/4W 1% 100PPM
R824	6S11049A01	10.0000	RESIST	FMF 1/4W 1% 100PPM

RESIST

RESIST

RESIST

SWITCH

FMF 1/4W 1% 100PPM

FMF 1/4W 1% 100PPM

FMF 1/4W 1% 100PPM

3 DIGIT INTERSW.

10.0000

40.2000

30.1000

6S11049A01

6S11049A59

6S11049A47

40AS1004

R825

R826

R827

S804

RIGHT THUMB WHEEL SWITCH

R828	6511049B94	1.0000 K	RESIST	FMF 1/4W 1% 100PPM
R829	6511049A97	100.0000	RESIST	FMF 1/4W 1% 100PPM
R830	6511049A97	100.0000	RESIST	FMF 1/4W 1% 100PPM
R831	6S11049B56	402.0000	RESIST	FMF 1/4W 1% 100PPM
R832	6S11049B44	301.0000	RESIST	FMF 1/4W 1% 100PPM
R833	6511049A01	10.0000	RESIST	FMF 1/4W 1% 100PPM
R834	6511049A01	10.0000	RESIST	FMF 1/4W 1% 100PPM
R835	6S11049A59	40.2000	RESIST	FMF 1/4W 1% 100PPM
R836	6511049A47	30.1000	RESIST	FMF 1/4W 1% 100PPM
S805	40AS1004		SWITCH	3 DIGIT INTERSW.

FRONT PANEL

E801	EM20-1			LAMP	DIAL LAMP 28V
E802	EM20-1			LAMP	DIAL LAMP 28V
E803	EM20-1		*	LAMP	DIAL LAMP 28V
E804	EM20-1			LAMP	DIAL LAMP 28V
1801	48-88245006			DIODE	LED GREEN
1802	48-88245C04		100	DIODE	LED RED
1803	48-88245C09			DIODE	LED YELLOW
1804	48-88245C09			DIODE	LED YELLOW
1805	48-88245C04			DIODE	LED RED
1806	48-88245C06			DIODE	LED GREEN
1807	48-88245C04			DIODE	LED RED
J816	09ND1004			JACK	SW. CRAFT N114B
M801	72PD1002	•		METER	PANEL MODULATION
M802	72PD1002			METER	PANEL MODULATION
M803	72PD1001			METI	ER PANEL EDGE
R837	70D4NO48F101W	100		POT	DUAL
S806	T101S1TZGE			SWITCH	SPDT TOGLE ALCO

RIGHT SIDE PANEL

T801	25PD1010	TRANSF	TOROID POWER TRANSFORMER
	28PD1001		POWER ENTRY MODULE